Nuprl Lemma : connection-bound
∀[T:Type]
  ((∀x,y:T.  Dec(x = y ∈ T))
  ⇒ (∀k:ℕ. (|T| ≤ k ⇒ (∀f:T ⟶ T. ∀a,b:T.  (∃n:ℕ. (b = (f^n a) ∈ T) ⇐⇒ ∃n:ℕk. (b = (f^n a) ∈ T))))))
Proof
Definitions occuring in Statement : 
cardinality-le: |T| ≤ n, 
fun_exp: f^n, 
int_seg: {i..j-}, 
nat: ℕ, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
uimplies: b supposing a, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
finite-type: finite-type(T), 
cardinality-le: |T| ≤ n, 
l_member: (x ∈ l), 
cand: A c∧ B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top
Lemmas referenced : 
cardinality-le-no_repeats-length, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
length_wf, 
lelt_wf, 
decidable_wf, 
all_wf, 
cardinality-le_wf, 
false_wf, 
int_seg_subtype_nat, 
int_seg_wf, 
fun_exp_wf, 
equal_wf, 
nat_wf, 
exists_wf, 
orbit-exists
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
independent_functionElimination, 
independent_pairFormation, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
productElimination, 
dependent_pairFormation, 
because_Cache, 
natural_numberEquality, 
setElimination, 
rename, 
cumulativity, 
independent_isectElimination, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  (|T|  \mleq{}  k  {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}a,b:T.    (\mexists{}n:\mBbbN{}.  (b  =  (f\^{}n  a))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}k.  (b  =  (f\^{}n  a)))))))
Date html generated:
2016_05_15-PM-04_11_42
Last ObjectModification:
2016_01_16-AM-11_06_27
Theory : general
Home
Index