Nuprl Lemma : orbit-exists

[T:Type]
  ((∀x,y:T.  Dec(x y ∈ T))
   finite-type(T)
   (∀f:T ⟶ T. ∀a:T.
        ∃L:T List
         (no_repeats(T;L) ∧ (∀i:ℕ||L||. (L[i] (f^i a) ∈ T)) ∧ (∀b:T. ((b ∈ L) ⇐⇒ ∃n:ℕ(b (f^n a) ∈ T))))))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) no_repeats: no_repeats(T;l) l_member: (x ∈ l) select: L[n] length: ||as|| list: List fun_exp: f^n int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: so_apply: x[s] finite-type: finite-type(T) top: Top surject: Surj(A;B;f) pi1: fst(t) less_than': less_than'(a;b) subtype_rel: A ⊆B guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q true: True label: ...$L... t sq_type: SQType(T) nat_plus: + int_nzero: -o nequal: a ≠ b ∈ 
Lemmas referenced :  decidable__exists_int_seg equal_wf fun_exp_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le int_seg_wf istype-nat finite-type_wf decidable_wf istype-universe int_term_value_add_lemma istype-void itermAdd_wf decidable__equal_int_seg not-inject inject_wf injection_le istype-false int_seg_subtype_nat int_formula_prop_less_lemma intformless_wf mu-dec-property mu-dec_wf exists_wf map_wf upto_wf length_wf l_member_wf nat_wf subtype_rel_list member_map no_repeats_wf select_wf decidable__lt istype-less_than before-upto before-map no_repeats_iff not_wf l_before_wf iff_weakening_uiff length-map length_upto iff_weakening_equal subtype_rel_self map_select true_wf squash_wf int_formula_prop_eq_lemma intformeq_wf decidable__equal_int select_upto member_upto subtype_base_sq int_subtype_base subtract-add-cancel fun_exp_add_sq subtract_wf itermSubtract_wf int_term_value_subtract_lemma fun_exp-rem rem_bounds_1 remainder_wfa nequal_wf remainder_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination natural_numberEquality setElimination rename hypothesisEquality hypothesis isectElimination sqequalRule lambdaEquality_alt applyEquality dependent_set_memberEquality_alt productElimination imageElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination because_Cache functionIsType universeEquality equalityIstype isect_memberEquality_alt addEquality inhabitedIsType promote_hyp functionExtensionality equalityTransitivity equalitySymmetry productIsType applyLambdaEquality hyp_replacement productEquality imageMemberEquality baseClosed closedConclusion isectIsTypeImplies functionIsTypeImplies isectEquality functionEquality cumulativity intEquality baseApply sqequalBase

Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  finite-type(T)
    {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}a:T.
                \mexists{}L:T  List
                  (no\_repeats(T;L)
                  \mwedge{}  (\mforall{}i:\mBbbN{}||L||.  (L[i]  =  (f\^{}i  a)))
                  \mwedge{}  (\mforall{}b:T.  ((b  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  (b  =  (f\^{}n  a)))))))



Date html generated: 2020_05_19-PM-09_44_35
Last ObjectModification: 2020_01_01-AM-10_06_05

Theory : list_1


Home Index