Nuprl Lemma : orbit-exists
∀[T:Type]
  ((∀x,y:T.  Dec(x = y ∈ T))
  
⇒ finite-type(T)
  
⇒ (∀f:T ⟶ T. ∀a:T.
        ∃L:T List
         (no_repeats(T;L) ∧ (∀i:ℕ||L||. (L[i] = (f^i a) ∈ T)) ∧ (∀b:T. ((b ∈ L) 
⇐⇒ ∃n:ℕ. (b = (f^n a) ∈ T))))))
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T)
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
fun_exp: f^n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
so_apply: x[s]
, 
finite-type: finite-type(T)
, 
top: Top
, 
surject: Surj(A;B;f)
, 
pi1: fst(t)
, 
less_than': less_than'(a;b)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
label: ...$L... t
, 
sq_type: SQType(T)
, 
nat_plus: ℕ+
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
decidable__exists_int_seg, 
equal_wf, 
fun_exp_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
int_seg_wf, 
istype-nat, 
finite-type_wf, 
decidable_wf, 
istype-universe, 
int_term_value_add_lemma, 
istype-void, 
itermAdd_wf, 
decidable__equal_int_seg, 
not-inject, 
inject_wf, 
injection_le, 
istype-false, 
int_seg_subtype_nat, 
int_formula_prop_less_lemma, 
intformless_wf, 
mu-dec-property, 
mu-dec_wf, 
exists_wf, 
map_wf, 
upto_wf, 
length_wf, 
l_member_wf, 
nat_wf, 
subtype_rel_list, 
member_map, 
no_repeats_wf, 
select_wf, 
decidable__lt, 
istype-less_than, 
before-upto, 
before-map, 
no_repeats_iff, 
not_wf, 
l_before_wf, 
iff_weakening_uiff, 
length-map, 
length_upto, 
iff_weakening_equal, 
subtype_rel_self, 
map_select, 
true_wf, 
squash_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
select_upto, 
member_upto, 
subtype_base_sq, 
int_subtype_base, 
subtract-add-cancel, 
fun_exp_add_sq, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
fun_exp-rem, 
rem_bounds_1, 
remainder_wfa, 
nequal_wf, 
remainder_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
dependent_set_memberEquality_alt, 
productElimination, 
imageElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
because_Cache, 
functionIsType, 
universeEquality, 
equalityIstype, 
isect_memberEquality_alt, 
addEquality, 
inhabitedIsType, 
promote_hyp, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
applyLambdaEquality, 
hyp_replacement, 
productEquality, 
imageMemberEquality, 
baseClosed, 
closedConclusion, 
isectIsTypeImplies, 
functionIsTypeImplies, 
isectEquality, 
functionEquality, 
cumulativity, 
intEquality, 
baseApply, 
sqequalBase
Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  finite-type(T)
    {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}a:T.
                \mexists{}L:T  List
                  (no\_repeats(T;L)
                  \mwedge{}  (\mforall{}i:\mBbbN{}||L||.  (L[i]  =  (f\^{}i  a)))
                  \mwedge{}  (\mforall{}b:T.  ((b  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  (b  =  (f\^{}n  a)))))))
Date html generated:
2020_05_19-PM-09_44_35
Last ObjectModification:
2020_01_01-AM-10_06_05
Theory : list_1
Home
Index