Nuprl Lemma : fun_exp_add_sq

[n,m:ℕ]. ∀[f,i:Top].  (f^n f^n (f^m i))


Proof




Definitions occuring in Statement :  fun_exp: f^n nat: uall: [x:A]. B[x] top: Top apply: a add: m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True sq_type: SQType(T) sq_stable: SqStable(P) squash: T bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b compose: g
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf top_wf nat_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel fun_exp0_lemma subtract-add-cancel subtype_base_sq int_subtype_base fun_exp_unroll not-le-2 sq_stable__le le_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int le_antisymmetry_iff eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int add-subtract-cancel add_nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom unionElimination independent_pairFormation productElimination addEquality applyEquality voidEquality intEquality minusEquality because_Cache instantiate cumulativity equalityTransitivity equalitySymmetry dependent_set_memberEquality imageMemberEquality baseClosed imageElimination equalityElimination dependent_pairFormation promote_hyp

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[f,i:Top].    (f\^{}n  +  m  i  \msim{}  f\^{}n  (f\^{}m  i))



Date html generated: 2017_04_14-AM-07_34_53
Last ObjectModification: 2017_02_27-PM-03_07_50

Theory : fun_1


Home Index