Nuprl Lemma : injection_le

[k,m:ℕ].  k ≤ supposing ∃f:ℕk ⟶ ℕm. Inj(ℕk;ℕm;f)


Proof




Definitions occuring in Statement :  inject: Inj(A;B;f) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B exists: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: le: A ≤ B and: P ∧ Q not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k nat_plus: + less_than: a < b bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  inject: Inj(A;B;f) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf less_than'_wf exists_wf int_seg_wf inject_wf nat_wf sq_stable__le decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel not-le-2 le-add-cancel-alt lelt_wf int_seg_properties le_wf int_subtype_base equal_wf le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul minus-zero omega-shadow mul-distributes mul-associates mul-commutes eq_int_wf decidable__lt not-lt-2 le-add-cancel2 bool_wf eqtt_to_assert assert_of_eq_int set_subtype_base int_seg_subtype le_antisymmetry_iff le_weakening eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int all_wf not-equal-2 not-equal-implies-less subtype_rel_self assert_wf bnot_wf not_wf bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot ifthenelse_wf equal_functionality_wrt_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality functionExtensionality applyEquality because_Cache imageMemberEquality baseClosed imageElimination unionElimination independent_pairFormation addEquality voidEquality intEquality minusEquality dependent_set_memberEquality applyLambdaEquality dependent_pairFormation sqequalIntensionalEquality promote_hyp multiplyEquality equalityElimination instantiate cumulativity impliesFunctionality

Latex:
\mforall{}[k,m:\mBbbN{}].    k  \mleq{}  m  supposing  \mexists{}f:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}m.  Inj(\mBbbN{}k;\mBbbN{}m;f)



Date html generated: 2017_04_14-AM-07_33_32
Last ObjectModification: 2017_02_27-PM-03_11_31

Theory : fun_1


Home Index