Nuprl Lemma : before-upto
∀n:ℕ. ∀x,y:ℕn.  (x before y ∈ upto(n) 
⇐⇒ x < y)
Proof
Definitions occuring in Statement : 
upto: upto(n)
, 
l_before: x before y ∈ l
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
l_before: x before y ∈ l
, 
sublist: L1 ⊆ L2
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
increasing: increasing(f;k)
, 
sq_type: SQType(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
eq_int: (i =z j)
Lemmas referenced : 
length_of_cons_lemma, 
length_of_nil_lemma, 
exists_wf, 
int_seg_wf, 
length_wf, 
upto_wf, 
increasing_wf, 
false_wf, 
le_wf, 
all_wf, 
equal_wf, 
select_wf, 
cons_wf, 
nil_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
non_neg_length, 
lelt_wf, 
length_wf_nat, 
length_upto, 
less_than_wf, 
nat_wf, 
select_upto, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
zero-add, 
ifthenelse_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
decidable__equal_int, 
int_seg_subtype, 
int_seg_cases
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
productElimination, 
isectElimination, 
functionEquality, 
natural_numberEquality, 
because_Cache, 
setElimination, 
rename, 
lambdaEquality, 
productEquality, 
dependent_set_memberEquality, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
independent_isectElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
addEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
cumulativity, 
equalityElimination, 
promote_hyp, 
hypothesis_subsumption
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbN{}n.    (x  before  y  \mmember{}  upto(n)  \mLeftarrow{}{}\mRightarrow{}  x  <  y)
Date html generated:
2017_04_17-AM-07_58_22
Last ObjectModification:
2017_02_27-PM-04_29_51
Theory : list_1
Home
Index