Nuprl Lemma : before-upto

n:ℕ. ∀x,y:ℕn.  (x before y ∈ upto(n) ⇐⇒ x < y)


Proof




Definitions occuring in Statement :  upto: upto(n) l_before: before y ∈ l int_seg: {i..j-} nat: less_than: a < b all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  l_before: before y ∈ l sublist: L1 ⊆ L2 all: x:A. B[x] member: t ∈ T top: Top iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] prop: uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A subtype_rel: A ⊆B int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) so_apply: x[s] rev_implies:  Q less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m increasing: increasing(f;k) sq_type: SQType(T) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  eq_int: (i =z j)
Lemmas referenced :  length_of_cons_lemma length_of_nil_lemma exists_wf int_seg_wf length_wf upto_wf increasing_wf false_wf le_wf all_wf equal_wf select_wf cons_wf nil_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma non_neg_length lelt_wf length_wf_nat length_upto less_than_wf nat_wf select_upto subtype_base_sq set_subtype_base int_subtype_base zero-add ifthenelse_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__equal_int int_seg_subtype int_seg_cases
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation independent_pairFormation productElimination isectElimination functionEquality natural_numberEquality because_Cache setElimination rename lambdaEquality productEquality dependent_set_memberEquality hypothesisEquality functionExtensionality applyEquality independent_isectElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll addEquality equalityTransitivity equalitySymmetry applyLambdaEquality independent_functionElimination imageMemberEquality baseClosed instantiate cumulativity equalityElimination promote_hyp hypothesis_subsumption

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbN{}n.    (x  before  y  \mmember{}  upto(n)  \mLeftarrow{}{}\mRightarrow{}  x  <  y)



Date html generated: 2017_04_17-AM-07_58_22
Last ObjectModification: 2017_02_27-PM-04_29_51

Theory : list_1


Home Index