Nuprl Lemma : divisibility-by-2-rule

n:ℕ+. ∀a:ℕn ⟶ ℤ.  (2 | Σi<n.a[i]*10^i ⇐⇒ a[0])


Proof




Definitions occuring in Statement :  power-sum: Σi<n.a[i]*x^i divides: a int_seg: {i..j-} nat_plus: + so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat_plus: + eqmod: a ≡ mod m divides: a exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top subtract: m prop: false: False subtype_rel: A ⊆B power-sum: Σi<n.a[i]*x^i so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) rev_implies:  Q iff: ⇐⇒ Q sq_type: SQType(T) guard: {T} squash: T true: True nat: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  int_seg_wf istype-int nat_plus_wf nat_plus_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermSubtract_wf itermConstant_wf itermMultiply_wf int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf int_subtype_base power-sum_wf nat_plus_subtype_nat eqmod_wf istype-false decidable__lt intformand_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma le_wf less_than_wf eqmod_functionality_wrt_eqmod power-sum_functionality_wrt_eqmod eqmod_weakening subtype_base_sq isolate_summand exp_wf2 int_seg_subtype_nat equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal exp0_lemma sum_wf nat_wf eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert set_subtype_base lelt_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int zero_ann_a exp-zero not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero itermAdd_wf int_term_value_add_lemma add_functionality_wrt_eq sum_constant divides_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut functionIsType universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis dependent_pairFormation_alt dependent_functionElimination because_Cache unionElimination independent_isectElimination approximateComputation independent_functionElimination lambdaEquality_alt isect_memberEquality_alt voidElimination sqequalRule equalityIsType4 inhabitedIsType baseClosed baseApply closedConclusion applyEquality dependent_set_memberEquality_alt independent_pairFormation int_eqEquality productIsType productElimination promote_hyp instantiate cumulativity intEquality equalityTransitivity equalitySymmetry multiplyEquality imageElimination universeEquality imageMemberEquality equalityElimination equalityIsType2 inrFormation_alt addEquality minusEquality equalityIsType1

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}a:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}.    (2  |  \mSigma{}i<n.a[i]*10\^{}i  \mLeftarrow{}{}\mRightarrow{}  2  |  a[0])



Date html generated: 2019_10_15-AM-11_25_58
Last ObjectModification: 2018_10_09-PM-00_15_01

Theory : general


Home Index