Nuprl Lemma : equipollent-nat-powered2

f:n:ℕ ⟶ ℕ ⟶ (ℕ^n 1). ∀n:ℕBij(ℕ;(ℕ^n 1);f n)


Proof




Definitions occuring in Statement :  power-type: (T^k) biject: Bij(A;B;f) nat: all: x:A. B[x] exists: x:A. B[x] apply: a function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  equipollent: B exists: x:A. B[x] member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] pi1: fst(t)
Lemmas referenced :  all_wf equal_wf biject_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties power-type_wf nat_wf exists_wf equipollent-nat-powered
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep rename sqequalSubstitution dependent_pairFormation lambdaEquality applyEquality hypothesisEquality thin isectElimination functionEquality hypothesis because_Cache dependent_set_memberEquality addEquality setElimination natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll lambdaFormation productElimination equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mexists{}f:n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  (\mBbbN{}\^{}n  +  1).  \mforall{}n:\mBbbN{}.  Bij(\mBbbN{};(\mBbbN{}\^{}n  +  1);f  n)



Date html generated: 2016_05_15-PM-06_07_12
Last ObjectModification: 2016_01_16-PM-00_44_16

Theory : general


Home Index