Nuprl Lemma : equipollent-nat-powered

n:ℕ. ℕ (ℕ^n 1)


Proof




Definitions occuring in Statement :  power-type: (T^k) equipollent: B nat: all: x:A. B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  power-type: (T^k) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  bfalse: ff btrue: tt equipollent: B bool: 𝔹 unit: Unit it: subtype_rel: A ⊆B uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q inv_funs: InvFuns(A;B;f;g) tidentity: Id{T} identity: Id compose: g guard: {T} squash: T true: True sq_type: SQType(T) code-pair: code-pair(a;b) triangular-num: t(n)
Lemmas referenced :  equipollent_wf nat_wf power-type_wf subtract_wf subtract-add-cancel decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf set_wf less_than_wf primrec-wf2 nat_properties itermAdd_wf int_term_value_add_lemma equipollent-type-unit-pair eq_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot general_arith_equation1 equal_wf coded-pair_wf fun_with_inv_is_bij2 add-subtract-cancel biject-inverse biject_wf code-pair_wf inv_funs_wf code-coded-pair subtype_base_sq set_subtype_base squash_wf true_wf iff_weakening_equal product_subtype_base decidable__equal_int coded-code-pair zero-le-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin rename setElimination introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesis because_Cache dependent_set_memberEquality addEquality hypothesisEquality natural_numberEquality sqequalRule dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll productElimination equalityElimination baseApply closedConclusion baseClosed applyEquality independent_functionElimination equalityTransitivity equalitySymmetry impliesFunctionality productEquality spreadEquality independent_pairEquality functionExtensionality instantiate cumulativity applyLambdaEquality imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}n:\mBbbN{}.  \mBbbN{}  \msim{}  (\mBbbN{}\^{}n  +  1)



Date html generated: 2018_05_21-PM-08_14_26
Last ObjectModification: 2017_07_26-PM-05_49_18

Theory : general


Home Index