Nuprl Lemma : expfact-property
∀k:ℕ. ∀n:ℕ+. ∃m:ℕ+. ((n * k^m) ≤ (m)!)
Proof
Definitions occuring in Statement :
fact: (n)!
,
exp: i^n
,
nat_plus: ℕ+
,
nat: ℕ
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
multiply: n * m
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
exists: ∃x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
nat_plus: ℕ+
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
and: P ∧ Q
,
prop: ℙ
,
nat: ℕ
,
implies: P
⇒ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
guard: {T}
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
,
top: Top
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
fact: (n)!
,
primrec: primrec(n;b;c)
,
subtract: n - m
,
le: A ≤ B
,
sq_stable: SqStable(P)
,
uiff: uiff(P;Q)
Lemmas referenced :
equal_wf,
multiply-is-int-iff,
sq_stable__le,
set_wf,
nat_plus_subtype_nat,
le_wf,
false_wf,
set_subtype_base,
iff_weakening_equal,
exp1,
int_term_value_mul_lemma,
int_formula_prop_less_lemma,
itermMultiply_wf,
intformless_wf,
fact0_redex_lemma,
exp0_lemma,
int_formula_prop_wf,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
intformeq_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__le,
nat_plus_properties,
nat_properties,
int_subtype_base,
subtype_base_sq,
decidable__equal_int,
fact_wf,
exp_wf2,
less_than_wf,
expfact_wf,
nat_wf,
nat_plus_wf,
fact-greater-exp
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
applyEquality,
because_Cache,
hypothesis,
sqequalRule,
productElimination,
isectElimination,
dependent_set_memberEquality,
natural_numberEquality,
independent_pairFormation,
introduction,
imageMemberEquality,
baseClosed,
multiplyEquality,
setElimination,
rename,
lambdaEquality,
independent_functionElimination,
unionElimination,
instantiate,
cumulativity,
intEquality,
independent_isectElimination,
dependent_pairFormation,
int_eqEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
equalityEquality,
equalityTransitivity,
equalitySymmetry,
setEquality,
imageElimination,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion
Latex:
\mforall{}k:\mBbbN{}. \mforall{}n:\mBbbN{}\msupplus{}. \mexists{}m:\mBbbN{}\msupplus{}. ((n * k\^{}m) \mleq{} (m)!)
Date html generated:
2016_05_15-PM-04_07_08
Last ObjectModification:
2016_01_16-AM-11_02_43
Theory : general
Home
Index