Nuprl Lemma : nat-plus-ind-primes

[P:ℕ+ ⟶ ℙ]. (P[1]  (∀p:Prime. P[p])  (∀n,m:ℕ+.  (P[n]  P[m]  P[n m]))  (∀n:ℕ+P[n]))


Proof




Definitions occuring in Statement :  Prime: Prime nat_plus: + uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] multiply: m natural_number: $n
Definitions unfolded in proof :  Prime: Prime subtype_rel: A ⊆B so_apply: x[s] sq_exists: x:A [B[x]] prop: and: P ∧ Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A int_upper: {i...} guard: {T} sq_type: SQType(T) uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat_plus: + member: t ∈ T all: x:A. B[x] implies:  Q uall: [x:A]. B[x] so_lambda: λ2x.t[x] le: A ≤ B cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) less_than': less_than'(a;b) true: True mul-list: Π(ns)  reduce: reduce(f;k;as) list_ind: list_ind cons: [a b]
Lemmas referenced :  istype-less_than decidable__lt int_upper_properties Prime_wf mul_nat_plus subtype_rel_self nat_plus_wf sq_stable__equal istype-le int_formula_prop_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int intformless_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_plus_properties prime-factors int_subtype_base subtype_base_sq decidable__equal_int list_induction int_upper_wf prime_wf mul-list_wf subtype_rel_list istype-int_upper mul-list-positive subtype_rel_set subtype_rel_sets_simple le_wf less_than_wf istype-false not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel list_wf mul_list_nil_lemma
Rules used in proof :  universeEquality applyEquality functionIsType equalitySymmetry equalityTransitivity voidElimination universeIsType independent_pairFormation sqequalRule Error :memTop,  int_eqEquality lambdaEquality_alt dependent_pairFormation_alt approximateComputation dependent_set_memberEquality_alt independent_functionElimination because_Cache independent_isectElimination intEquality cumulativity isectElimination instantiate unionElimination natural_numberEquality hypothesis hypothesisEquality rename setElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution setEquality setIsType productElimination multiplyEquality

Latex:
\mforall{}[P:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbP{}].  (P[1]  {}\mRightarrow{}  (\mforall{}p:Prime.  P[p])  {}\mRightarrow{}  (\mforall{}n,m:\mBbbN{}\msupplus{}.    (P[n]  {}\mRightarrow{}  P[m]  {}\mRightarrow{}  P[n  *  m]))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  P[n]))



Date html generated: 2020_05_20-AM-08_08_13
Last ObjectModification: 2019_12_13-AM-10_08_47

Theory : general


Home Index