Nuprl Lemma : nat-plus-ind-primes
∀[P:ℕ+ ⟶ ℙ]. (P[1] 
⇒ (∀p:Prime. P[p]) 
⇒ (∀n,m:ℕ+.  (P[n] 
⇒ P[m] 
⇒ P[n * m])) 
⇒ (∀n:ℕ+. P[n]))
Proof
Definitions occuring in Statement : 
Prime: Prime
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
natural_number: $n
Definitions unfolded in proof : 
Prime: Prime
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
sq_exists: ∃x:A [B[x]]
, 
prop: ℙ
, 
and: P ∧ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
int_upper: {i...}
, 
guard: {T}
, 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat_plus: ℕ+
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
le: A ≤ B
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
true: True
, 
mul-list: Π(ns) 
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
cons: [a / b]
Lemmas referenced : 
istype-less_than, 
decidable__lt, 
int_upper_properties, 
Prime_wf, 
mul_nat_plus, 
subtype_rel_self, 
nat_plus_wf, 
sq_stable__equal, 
istype-le, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_plus_properties, 
prime-factors, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
list_induction, 
int_upper_wf, 
prime_wf, 
mul-list_wf, 
subtype_rel_list, 
istype-int_upper, 
mul-list-positive, 
subtype_rel_set, 
subtype_rel_sets_simple, 
le_wf, 
less_than_wf, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
list_wf, 
mul_list_nil_lemma
Rules used in proof : 
universeEquality, 
applyEquality, 
functionIsType, 
equalitySymmetry, 
equalityTransitivity, 
voidElimination, 
universeIsType, 
independent_pairFormation, 
sqequalRule, 
Error :memTop, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
approximateComputation, 
dependent_set_memberEquality_alt, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
intEquality, 
cumulativity, 
isectElimination, 
instantiate, 
unionElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
setEquality, 
setIsType, 
productElimination, 
multiplyEquality
Latex:
\mforall{}[P:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbP{}].  (P[1]  {}\mRightarrow{}  (\mforall{}p:Prime.  P[p])  {}\mRightarrow{}  (\mforall{}n,m:\mBbbN{}\msupplus{}.    (P[n]  {}\mRightarrow{}  P[m]  {}\mRightarrow{}  P[n  *  m]))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  P[n]))
Date html generated:
2020_05_20-AM-08_08_13
Last ObjectModification:
2019_12_13-AM-10_08_47
Theory : general
Home
Index