Nuprl Lemma : mul-list-positive

L:ℕ+ List. 0 < Π(L) 


Proof




Definitions occuring in Statement :  mul-list: Π(ns)  list: List nat_plus: + less_than: a < b all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: guard: {T} or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) true: True cons: [a b] le: A ≤ B subtype_rel: A ⊆B nat_plus: + colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) mul-list: Π(ns)  reduce: reduce(f;k;as) list_ind: list_ind
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than member-less_than intformeq_wf int_formula_prop_eq_lemma nat_plus_wf list-cases mul_list_nil_lemma product_subtype_list colength-cons-not-zero istype-nat colength_wf_list istype-void istype-le list_wf mul-list_wf subtype_rel_list subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf mul_bounds_1b nat_plus_properties decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination equalityTransitivity equalitySymmetry applyLambdaEquality functionIsTypeImplies inhabitedIsType unionElimination imageMemberEquality baseClosed promote_hyp hypothesis_subsumption productElimination equalityIstype dependent_set_memberEquality_alt applyEquality intEquality because_Cache instantiate imageElimination baseApply closedConclusion sqequalBase cumulativity multiplyEquality

Latex:
\mforall{}L:\mBbbN{}\msupplus{}  List.  0  <  \mPi{}(L) 



Date html generated: 2020_05_20-AM-08_07_15
Last ObjectModification: 2019_12_13-AM-10_06_16

Theory : general


Home Index