Step
*
1
of Lemma
power-sum-product
.....basecase.....
1. x : ℤ
2. n : ℤ
⊢ ∀[a:ℕ0 + 1 ⟶ ℤ]. ∀[m:ℕ]. ∀[b:ℕm + 1 ⟶ ℤ].
((Σ(a[i] * x^i | i < 0 + 1) * Σ(b[i] * x^i | i < m + 1))
= Σ(Σ(if j ≤z 0 then a[j] else 0 fi * if i - j ≤z m then b[i - j] else 0 fi | j < i + 1) * x^i | i < (0 + m) + 1)
∈ ℤ)
BY
{ (Auto THEN Subst' Σ(a[i] * x^i | i < 0 + 1) * Σ(b[i] * x^i | i < m + 1) ~ Σ((a[0] * b[i]) * x^i | i < m + 1) 0) }
1
.....equality.....
1. x : ℤ
2. n : ℤ
3. a : ℕ0 + 1 ⟶ ℤ
4. m : ℕ
5. b : ℕm + 1 ⟶ ℤ
⊢ Σ(a[i] * x^i | i < 0 + 1) * Σ(b[i] * x^i | i < m + 1) ~ Σ((a[0] * b[i]) * x^i | i < m + 1)
2
1. x : ℤ
2. n : ℤ
3. a : ℕ0 + 1 ⟶ ℤ
4. m : ℕ
5. b : ℕm + 1 ⟶ ℤ
⊢ Σ((a[0] * b[i]) * x^i | i < m + 1)
= Σ(Σ(if j ≤z 0 then a[j] else 0 fi * if i - j ≤z m then b[i - j] else 0 fi | j < i + 1) * x^i | i < (0 + m) + 1)
∈ ℤ
Latex:
Latex:
.....basecase.....
1. x : \mBbbZ{}
2. n : \mBbbZ{}
\mvdash{} \mforall{}[a:\mBbbN{}0 + 1 {}\mrightarrow{} \mBbbZ{}]. \mforall{}[m:\mBbbN{}]. \mforall{}[b:\mBbbN{}m + 1 {}\mrightarrow{} \mBbbZ{}].
((\mSigma{}(a[i] * x\^{}i | i < 0 + 1) * \mSigma{}(b[i] * x\^{}i | i < m + 1))
= \mSigma{}(\mSigma{}(if j \mleq{}z 0 then a[j] else 0 fi * if i - j \mleq{}z m then b[i - j] else 0 fi | j < i + 1)
* x\^{}i | i < (0 + m) + 1))
By
Latex:
(Auto
THEN Subst' \mSigma{}(a[i] * x\^{}i | i < 0 + 1) * \mSigma{}(b[i] * x\^{}i | i < m + 1) \msim{} \mSigma{}((a[0] * b[i]) * x\^{}i | i < m
+ 1) 0
)
Home
Index