Nuprl Lemma : power-sum-product

[x:ℤ]. ∀[n:ℕ]. ∀[a:ℕ1 ⟶ ℤ]. ∀[m:ℕ]. ∀[b:ℕ1 ⟶ ℤ].
  ((Σi<1.a[i]*x^i * Σi<1.b[i]*x^i)
  = Σi<(n m) 1.Σ(if j ≤then a[j] else fi  if j ≤then b[i j] else fi  j < 1)*x^i
  ∈ ℤ)


Proof




Definitions occuring in Statement :  power-sum: Σi<n.a[i]*x^i sum: Σ(f[x] x < k) int_seg: {i..j-} nat: le_int: i ≤j ifthenelse: if then else fi  uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] multiply: m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  prop: and: P ∧ Q top: Top all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x] power-sum: Σi<n.a[i]*x^i sq_type: SQType(T) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff bnot: ¬bb assert: b le_int: i ≤j lt_int: i <j subtract: m nat_plus: + rev_uimplies: rev_uimplies(P;Q) nequal: a ≠ b ∈ 
Lemmas referenced :  nat_wf subtract-1-ge-0 istype-less_than ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties int_seg_wf subtype_base_sq int_subtype_base sum1 decidable__lt intformnot_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_add_lemma lelt_wf exp_wf2 int_seg_subtype_nat false_wf exp0_lemma mul-one equal_wf squash_wf true_wf sum_scalar_mult decidable__le le_wf sum_wf subtype_rel_self iff_weakening_equal decidable__equal_int intformeq_wf int_formula_prop_eq_lemma int_seg_properties itermMultiply_wf int_term_value_mul_lemma singleton_support_sum le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot subtract_wf itermSubtract_wf int_term_value_subtract_lemma not_wf equal-wf-T-base minus-zero add-zero le-add-cancel add-commutes add-associates zero-mul add-mul-special minus-one-mul-top add-swap minus-one-mul minus-add condition-implies-le not-le-2 istype-false int_seg_subtype subtype_rel_function add_functionality_wrt_le zero-add less-iff-le not-lt-2 sum_split1 mul-distributes-right subtract-add-cancel general_arith_equation1 exp_add less_than_wf add-subtract-cancel istype-universe istype-le iff_weakening_uiff assert_wf istype-nat set_subtype_base ifthenelse_wf ite_rw_true neg_assert_of_eq_int assert_of_eq_int eq_int_wf sum_linear mul_add_distrib sum_split empty_support add-member-int_seg2 sum-is-zero le_weakening2 zero_ann_a
Rules used in proof :  functionIsTypeImplies inhabitedIsType isectIsTypeImplies axiomEquality universeIsType independent_pairFormation voidElimination isect_memberEquality_alt dependent_functionElimination int_eqEquality lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality lambdaFormation_alt intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution isect_memberFormation functionEquality addEquality intEquality isect_memberEquality because_Cache instantiate cumulativity equalityTransitivity equalitySymmetry lambdaEquality multiplyEquality applyEquality functionExtensionality dependent_set_memberEquality productElimination unionElimination dependent_pairFormation voidEquality lambdaFormation imageMemberEquality baseClosed imageElimination universeEquality equalityElimination promote_hyp functionIsType minusEquality closedConclusion dependent_set_memberEquality_alt Error :memTop,  productIsType equalityIstype sqequalBase equalityIsType1 baseApply equalityIsType4

Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[m:\mBbbN{}].  \mforall{}[b:\mBbbN{}m  +  1  {}\mrightarrow{}  \mBbbZ{}].
    ((\mSigma{}i<n  +  1.a[i]*x\^{}i  *  \mSigma{}i<m  +  1.b[i]*x\^{}i)
    =  \mSigma{}i<(n  +  m)  +  1.\mSigma{}(if  j  \mleq{}z  n  then  a[j]  else  0  fi    *  if  i  -  j  \mleq{}z  m  then  b[i  -  j]  else  0  fi    |  j  <  i
        +  1)*x\^{}i)



Date html generated: 2020_05_20-AM-08_16_38
Last ObjectModification: 2020_02_01-PM-00_11_15

Theory : general


Home Index