Nuprl Lemma : prank_functionality

[P,Q:formula()].  prank(P) ≤ prank(Q) supposing P ⊆ Q


Proof




Definitions occuring in Statement :  psub: a ⊆ b prank: prank(x) formula: formula() uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q or: P ∨ Q subtype_rel: A ⊆B decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: and: P ∧ Q nat: less_than: a < b squash: T le: A ≤ B
Lemmas referenced :  prank-psub decidable__le prank_wf satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf and_wf equal_wf formula_wf nat_wf le_wf intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma less_than'_wf psub_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis unionElimination isectElimination applyEquality because_Cache sqequalRule natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalitySymmetry dependent_set_memberEquality independent_pairFormation setElimination rename productElimination setEquality equalityTransitivity hyp_replacement Error :applyLambdaEquality,  imageElimination independent_pairEquality axiomEquality

Latex:
\mforall{}[P,Q:formula()].    prank(P)  \mleq{}  prank(Q)  supposing  P  \msubseteq{}  Q



Date html generated: 2016_10_25-AM-11_21_55
Last ObjectModification: 2016_07_12-AM-07_28_05

Theory : general


Home Index