Nuprl Lemma : prank_functionality
∀[P,Q:formula()].  prank(P) ≤ prank(Q) supposing P ⊆ Q
Proof
Definitions occuring in Statement : 
psub: a ⊆ b
, 
prank: prank(x)
, 
formula: formula()
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
and: P ∧ Q
, 
nat: ℕ
, 
less_than: a < b
, 
squash: ↓T
, 
le: A ≤ B
Lemmas referenced : 
prank-psub, 
decidable__le, 
prank_wf, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
and_wf, 
equal_wf, 
formula_wf, 
nat_wf, 
le_wf, 
intformand_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
less_than'_wf, 
psub_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
unionElimination, 
isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
setElimination, 
rename, 
productElimination, 
setEquality, 
equalityTransitivity, 
hyp_replacement, 
Error :applyLambdaEquality, 
imageElimination, 
independent_pairEquality, 
axiomEquality
Latex:
\mforall{}[P,Q:formula()].    prank(P)  \mleq{}  prank(Q)  supposing  P  \msubseteq{}  Q
Date html generated:
2016_10_25-AM-11_21_55
Last ObjectModification:
2016_07_12-AM-07_28_05
Theory : general
Home
Index