Nuprl Lemma : prank-psub

a,b:formula().  (a ⊆  ((a b ∈ formula()) ∨ prank(a) < prank(b)))


Proof




Definitions occuring in Statement :  psub: a ⊆ b prank: prank(x) formula: formula() less_than: a < b all: x:A. B[x] implies:  Q or: P ∨ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B nat: so_apply: x[s] prank: prank(x) psub: a ⊆ b pvar: pvar(name) formula_ind: formula_ind or: P ∨ Q pnot: pnot(sub) guard: {T} pand: pand(left;right) por: por(left;right) pimp: pimp(left;right) true: True bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  decidable: Dec(P) le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top bfalse: ff less_than: a < b squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  formula_wf formula-induction psub_wf or_wf equal_wf less_than_wf prank_wf nat_wf equal-wf-T-base atom_subtype_base pnot_wf imax_wf pand_wf por_wf pimp_wf ifthenelse_wf le_int_wf bool_wf uiff_transitivity assert_wf le_wf eqtt_to_assert assert_of_le_int decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf lt_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int squash_wf true_wf add_functionality_wrt_eq imax_unfold iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality functionEquality hypothesisEquality applyEquality setElimination rename because_Cache independent_functionElimination inlFormation natural_numberEquality baseApply closedConclusion baseClosed atomEquality unionElimination addEquality inrFormation intEquality equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll hyp_replacement applyLambdaEquality imageElimination imageMemberEquality universeEquality

Latex:
\mforall{}a,b:formula().    (a  \msubseteq{}  b  {}\mRightarrow{}  ((a  =  b)  \mvee{}  prank(a)  <  prank(b)))



Date html generated: 2018_05_21-PM-08_53_06
Last ObjectModification: 2017_07_26-PM-06_16_34

Theory : general


Home Index