Nuprl Lemma : fdl-1-join-irreducible
∀[X:Type]
∀x,y:Point(free-dl(X)). (x ∨ y = 1 ∈ Point(free-dl(X))
⇐⇒ (x = 1 ∈ Point(free-dl(X))) ∨ (y = 1 ∈ Point(free-dl(X))))
Proof
Definitions occuring in Statement :
free-dl: free-dl(X)
,
lattice-1: 1
,
lattice-join: a ∨ b
,
lattice-point: Point(l)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
or: P ∨ Q
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
bdd-distributive-lattice: BoundedDistributiveLattice
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
rev_implies: P
⇐ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
false: False
,
not: ¬A
,
lattice-point: Point(l)
,
record-select: r.x
,
free-dl: free-dl(X)
,
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice,
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
,
record-update: r[x := v]
,
eq_atom: x =a y
,
free-dl-type: free-dl-type(X)
,
quotient: x,y:A//B[x; y]
,
lattice-join: a ∨ b
,
so_lambda: λ2x y.t[x; y]
,
free-dl-join: free-dl-join(as;bs)
,
append: as @ bs
,
list_ind: list_ind,
so_apply: x[s1;s2]
,
fdl-is-1: fdl-is-1(x)
Lemmas referenced :
equal_wf,
lattice-point_wf,
free-dl_wf,
subtype_rel_set,
bounded-lattice-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
bounded-lattice-axioms_wf,
uall_wf,
lattice-meet_wf,
lattice-join_wf,
lattice-1_wf,
bdd-distributive-lattice_wf,
or_wf,
fdl-is-1_wf,
bool_wf,
eqtt_to_assert,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
fdl-eq-1,
free-dl-type_wf,
not_wf,
assert_wf,
equal-wf-base,
list_wf,
dlattice-eq_wf,
subtype_quotient,
dlattice-eq-equiv,
bl-exists_wf,
append_wf,
isaxiom_wf_list,
l_member_wf,
assert-bl-exists,
l_exists_append,
l_exists_wf,
assert_witness,
lattice_properties,
bdd-distributive-lattice-subtype-lattice
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
independent_pairFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
applyEquality,
sqequalRule,
instantiate,
lambdaEquality,
productEquality,
cumulativity,
because_Cache,
independent_isectElimination,
setElimination,
rename,
universeEquality,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
independent_functionElimination,
voidElimination,
inlFormation,
inrFormation,
pointwiseFunctionalityForEquality,
functionEquality,
hyp_replacement,
pertypeElimination,
setEquality,
addLevel,
levelHypothesis,
impliesFunctionality,
impliesLevelFunctionality,
applyLambdaEquality
Latex:
\mforall{}[X:Type]. \mforall{}x,y:Point(free-dl(X)). (x \mvee{} y = 1 \mLeftarrow{}{}\mRightarrow{} (x = 1) \mvee{} (y = 1))
Date html generated:
2020_05_20-AM-08_42_58
Last ObjectModification:
2018_05_20-PM-10_11_34
Theory : lattices
Home
Index