Nuprl Lemma : interleaving_implies_occurence

[T:Type]
  ∀L1,L2,L:T List.
    (interleaving(T;L1;L2;L)  (∃f1:ℕ||L1|| ⟶ ℕ||L||. ∃f2:ℕ||L2|| ⟶ ℕ||L||. interleaving_occurence(T;L1;L2;L;f1;f2)))


Proof




Definitions occuring in Statement :  interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2) interleaving: interleaving(T;L1;L2;L) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q interleaving: interleaving(T;L1;L2;L) interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2) disjoint_sublists: disjoint_sublists(T;L1;L2;L) and: P ∧ Q exists: x:A. B[x] member: t ∈ T true: True prop: subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} nat: lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b squash: T le: A ≤ B so_apply: x[s]
Lemmas referenced :  equal_wf nat_wf increasing_wf length_wf_nat int_seg_wf length_wf all_wf select_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma non_neg_length lelt_wf not_wf exists_wf interleaving_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule productElimination thin dependent_pairFormation hypothesisEquality cut natural_numberEquality independent_pairFormation hypothesis productEquality introduction extract_by_obid isectElimination equalityTransitivity equalitySymmetry cumulativity functionExtensionality applyEquality lambdaEquality setElimination rename because_Cache independent_isectElimination applyLambdaEquality dependent_functionElimination unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination dependent_set_memberEquality independent_functionElimination functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2,L:T  List.
        (interleaving(T;L1;L2;L)
        {}\mRightarrow{}  (\mexists{}f1:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L||.  \mexists{}f2:\mBbbN{}||L2||  {}\mrightarrow{}  \mBbbN{}||L||.  interleaving\_occurence(T;L1;L2;L;f1;f2)))



Date html generated: 2017_10_01-AM-08_37_21
Last ObjectModification: 2017_07_26-PM-04_26_29

Theory : list!


Home Index