Nuprl Lemma : interleaving_implies_occurence
∀[T:Type]
  ∀L1,L2,L:T List.
    (interleaving(T;L1;L2;L) 
⇒ (∃f1:ℕ||L1|| ⟶ ℕ||L||. ∃f2:ℕ||L2|| ⟶ ℕ||L||. interleaving_occurence(T;L1;L2;L;f1;f2)))
Proof
Definitions occuring in Statement : 
interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2)
, 
interleaving: interleaving(T;L1;L2;L)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
interleaving: interleaving(T;L1;L2;L)
, 
interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2)
, 
disjoint_sublists: disjoint_sublists(T;L1;L2;L)
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
true: True
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
nat: ℕ
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
le: A ≤ B
, 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
nat_wf, 
increasing_wf, 
length_wf_nat, 
int_seg_wf, 
length_wf, 
all_wf, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
non_neg_length, 
lelt_wf, 
not_wf, 
exists_wf, 
interleaving_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
cut, 
natural_numberEquality, 
independent_pairFormation, 
hypothesis, 
productEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
applyLambdaEquality, 
dependent_functionElimination, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
imageElimination, 
dependent_set_memberEquality, 
independent_functionElimination, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2,L:T  List.
        (interleaving(T;L1;L2;L)
        {}\mRightarrow{}  (\mexists{}f1:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L||.  \mexists{}f2:\mBbbN{}||L2||  {}\mrightarrow{}  \mBbbN{}||L||.  interleaving\_occurence(T;L1;L2;L;f1;f2)))
Date html generated:
2017_10_01-AM-08_37_21
Last ObjectModification:
2017_07_26-PM-04_26_29
Theory : list!
Home
Index