Nuprl Lemma : interleaving_sublist

[T:Type]. ∀L,L1,L2:T List.  (interleaving(T;L1;L2;L)  L1 ⊆ L)


Proof




Definitions occuring in Statement :  interleaving: interleaving(T;L1;L2;L) sublist: L1 ⊆ L2 list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  sublist: L1 ⊆ L2 interleaving: interleaving(T;L1;L2;L) disjoint_sublists: disjoint_sublists(T;L1;L2;L) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q exists: x:A. B[x] member: t ∈ T cand: c∧ B prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} nat: lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b squash: T le: A ≤ B so_apply: x[s] uiff: uiff(P;Q)
Lemmas referenced :  increasing_wf length_wf_nat int_seg_wf length_wf all_wf equal_wf select_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma non_neg_length lelt_wf nat_wf add_nat_wf add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma false_wf le_wf exists_wf not_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality cut hypothesis independent_pairFormation productEquality introduction extract_by_obid isectElimination cumulativity functionExtensionality applyEquality because_Cache natural_numberEquality lambdaEquality setElimination rename independent_isectElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_functionElimination unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination dependent_set_memberEquality independent_functionElimination addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L,L1,L2:T  List.    (interleaving(T;L1;L2;L)  {}\mRightarrow{}  L1  \msubseteq{}  L)



Date html generated: 2017_10_01-AM-08_37_15
Last ObjectModification: 2017_07_26-PM-04_26_23

Theory : list!


Home Index