Nuprl Lemma : no_repeats_safety

[A:Type]. safety(A;L.no_repeats(A;L))


Proof




Definitions occuring in Statement :  safety: safety(A;tr.P[tr]) no_repeats: no_repeats(T;l) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  no_repeats: no_repeats(T;l) safety: safety(A;tr.P[tr]) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q uimplies: supposing a not: ¬A false: False prop: nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q cand: c∧ B le: A ≤ B
Lemmas referenced :  equal_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf not_wf nat_wf less_than_wf length_wf uall_wf isect_wf iseg_wf list_wf iseg_length iseg_select decidable__lt intformless_wf int_formula_prop_less_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination cumulativity hypothesisEquality because_Cache setElimination rename independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll equalityTransitivity equalitySymmetry universeEquality productElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[A:Type].  safety(A;L.no\_repeats(A;L))



Date html generated: 2017_10_01-AM-08_34_18
Last ObjectModification: 2017_07_26-PM-04_25_27

Theory : list!


Home Index