Nuprl Lemma : provisional-type-equality
∀[T:𝕌']. ∀[x,y:Provisional(T)].
  (x = y ∈ Provisional(T)) supposing ((allowed(x) ⇒ (allow(x) = allow(y) ∈ T)) and (allowed(x) ⇐⇒ allowed(y)))
Proof
Definitions occuring in Statement : 
allow: allow(x), 
allowed: allowed(x), 
provisional-type: Provisional(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
provisional-type: Provisional(T), 
quotient: x,y:A//B[x; y], 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
cand: A c∧ B, 
squash: ↓T, 
allow: allow(x), 
pi1: fst(t), 
pi2: snd(t), 
respects-equality: respects-equality(S;T), 
guard: {T}, 
allowed: allowed(x), 
true: True
Lemmas referenced : 
quotient-member-eq, 
squash_wf, 
iff_wf, 
pi1_wf, 
equal_wf, 
pi2_wf, 
uimplies_subtype, 
provisional-equiv, 
subtype-respects-equality, 
allowed_wf, 
allow_wf, 
provisional-type_wf, 
istype-universe, 
squash-implies-usquash, 
usquash-implies-squash, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
pointwiseFunctionalityForEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
instantiate, 
extract_by_obid, 
isectElimination, 
productEquality, 
universeEquality, 
isectEquality, 
cumulativity, 
hypothesisEquality, 
lambdaEquality_alt, 
universeIsType, 
functionEquality, 
applyEquality, 
independent_functionElimination, 
independent_isectElimination, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityIstype, 
productIsType, 
sqequalBase, 
functionIsType, 
isect_memberEquality_alt, 
hyp_replacement, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
setElimination, 
rename, 
isectIsType, 
axiomEquality, 
isectIsTypeImplies, 
natural_numberEquality
Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[x,y:Provisional(T)].
    (x  =  y)  supposing  ((allowed(x)  {}\mRightarrow{}  (allow(x)  =  allow(y)))  and  (allowed(x)  \mLeftarrow{}{}\mRightarrow{}  allowed(y)))
Date html generated:
2020_05_20-AM-08_01_01
Last ObjectModification:
2020_05_17-PM-07_17_16
Theory : monads
Home
Index