Nuprl Lemma : fps-compose-single-disjoint
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[v:bag(X)].
    ((¬x ↓∈ v) ⇒ (∀[f:PowerSeries(X;r)]. (<v>(x:=f) = <v> ∈ PowerSeries(X;r)))) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-compose: g(x:=f), 
fps-single: <c>, 
power-series: PowerSeries(X;r), 
bag-member: x ↓∈ bs, 
bag: bag(T), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
squash: ↓T, 
exists: ∃x:A. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
all: ∀x:A. B[x], 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
empty-bag: {}, 
uiff: uiff(P;Q), 
fps-one: 1, 
fps-coeff: f[b], 
fps-single: <c>, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
crng: CRng, 
rng: Rng, 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
cons-bag: x.b, 
top: Top, 
fps-atom: atom(x), 
rev_uimplies: rev_uimplies(P;Q), 
sq_or: a ↓∨ b
Lemmas referenced : 
bag_to_squash_list, 
not_wf, 
bag-member_wf, 
list_induction, 
list-subtype-bag, 
equal_wf, 
power-series_wf, 
fps-compose_wf, 
fps-single_wf, 
list_wf, 
nil_wf, 
cons_wf, 
bag_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
squash_wf, 
true_wf, 
fps-compose-one, 
fps-one_wf, 
iff_weakening_equal, 
fps-ext, 
empty-bag_wf, 
bag-eq_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-eq, 
bag-null_wf, 
assert-bag-null, 
rng_one_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
rng_zero_wf, 
single-bag_wf, 
fps-mul_wf, 
cons-bag-as-append, 
fps-mul-single, 
fps-compose-mul, 
fps-compose-atom-neq, 
bag-member-cons
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
cumulativity, 
rename, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
applyEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidEquality, 
voidElimination, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
equalityElimination, 
setElimination, 
dependent_pairFormation, 
instantiate, 
inlFormation, 
inrFormation
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[v:bag(X)].
        ((\mneg{}x  \mdownarrow{}\mmember{}  v)  {}\mRightarrow{}  (\mforall{}[f:PowerSeries(X;r)].  (<v>(x:=f)  =  <v>))) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-10_10_15
Last ObjectModification:
2017_07_26-PM-06_34_20
Theory : power!series
Home
Index