Nuprl Lemma : fps-compose-mul
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[g,f,h:PowerSeries(X;r)].
    ((g*h)(x:=f) = (g(x:=f)*h(x:=f)) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-compose: g(x:=f), 
fps-mul: (f*g), 
power-series: PowerSeries(X;r), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
infix_ap: x f y, 
prop: ℙ, 
group_p: IsGroup(T;op;id;inv), 
ring_p: IsRing(T;plus;zero;neg;times;one), 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
squash: ↓T, 
true: True, 
top: Top, 
pi2: snd(t), 
pi1: fst(t), 
fps-coeff: f[b], 
fps-mul: (f*g), 
fps-compose: g(x:=f), 
uiff: uiff(P;Q), 
so_apply: x[s], 
power-series: PowerSeries(X;r), 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
listp: A List+, 
rng: Rng, 
all: ∀x:A. B[x], 
cand: A c∧ B, 
and: P ∧ Q, 
comm: Comm(T;op), 
crng: CRng, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
compose: f o g, 
spreadn: spread3, 
or: P ∨ Q, 
sq_or: a ↓∨ b, 
false: False, 
not: ¬A, 
hdp: hdp(L), 
tlp: tlp(L), 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
decidable: Dec(P), 
nat: ℕ, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
cons: [a / b], 
it: ⋅, 
nil: [], 
list_ind: list_ind, 
length: ||as||, 
less_than': less_than'(a;b), 
le: A ≤ B, 
int_iseg: {i...j}, 
sq_type: SQType(T), 
label: ...$L... t, 
bag-append: as + bs, 
bag-product: Πx ∈ b. f[x], 
bag-member: x ↓∈ bs, 
subtract: n - m, 
inject: Inj(A;B;f), 
respects-equality: respects-equality(S;T), 
rev_uimplies: rev_uimplies(P;Q), 
sq_stable: SqStable(P), 
cons-bag: x.b, 
assert: ↑b, 
bnot: ¬bb, 
bfalse: ff, 
less_than: a < b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
unit: Unit, 
bool: 𝔹
Lemmas referenced : 
bag-summation-ring-linear1, 
subtype_rel_self, 
comm_wf, 
assoc_wf, 
true_wf, 
squash_wf, 
bag-summation-product, 
bag-map_wf, 
bag-combine_wf, 
iff_weakening_equal, 
bag-product_wf, 
equal_wf, 
bag-double-summation2, 
istype-void, 
pi1_wf_top, 
bag-parts'_wf, 
length_wf_nat, 
bag-rep_wf, 
hd_wf, 
bag-append_wf, 
bag-partitions_wf, 
infix_ap_wf, 
rng_zero_wf, 
rng_plus_wf, 
bag-summation_wf, 
istype-universe, 
valueall-type_wf, 
deq_wf, 
crng_wf, 
power-series_wf, 
fps-mul_wf, 
fps-compose_wf, 
fps-ext, 
list-subtype-bag, 
tl_wf, 
rng_one_wf, 
rng_times_wf, 
rng_car_wf, 
bag-product_wf, 
rng_properties, 
crng_properties, 
crng_all_properties, 
listp_wf, 
bag_wf, 
listp_properties, 
rng_plus_comm, 
subtype_rel_product, 
list_wf, 
istype-top, 
pi2_wf, 
top_wf, 
bag-summation-reindex, 
bag-summation-equal2, 
bag-member_wf, 
bag-map-combine, 
compose_wf, 
bag-map-trivial, 
bag-map-map, 
nth_tl_wf, 
bag-co-restrict_wf, 
bag-restrict_wf, 
bag-size_wf, 
firstn_wf, 
bag-co-restrict-property, 
bag-member-append, 
reduce_hd_cons_lemma, 
cons-listp, 
not_wf, 
bag-parts'_wf2, 
hdp_wf, 
tlp_wf, 
reduce_tl_cons_lemma, 
bag-restrict-rep, 
bag-restrict-append, 
bag-co-restrict-rep, 
bag-co-restrict-append, 
bag-subtype-list, 
bag-append-empty, 
bag-size-rep, 
bag-restrict-disjoint, 
empty_bag_append_lemma, 
nth_tl_append, 
istype-less_than, 
istype-le, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
intformless_wf, 
decidable__lt, 
false_wf, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
subtract-is-int-iff, 
decidable__le, 
nat_properties, 
subtract_nat_wf, 
length_tl, 
istype-int, 
le_wf, 
length_wf, 
subtype_rel_list, 
firstn_append, 
firstn_all, 
bag-co-restrict-disjoint, 
cons_wf, 
non_neg_length, 
length_of_cons_lemma, 
product_subtype_list, 
list-cases, 
append_wf, 
bag-member-partitions, 
bag-member-map, 
bag-member-parts', 
bag-member-combine, 
equal-wf-T-base, 
l_member_wf, 
l_all_wf2, 
bag_qinc, 
less_than_wf, 
subtype_rel_set, 
bag-union_wf, 
bag-size-append, 
istype-nat, 
length_firstn, 
subtract_wf, 
decidable__equal_int, 
length_nth_tl, 
int_subtype_base, 
set_subtype_base, 
nat_wf, 
subtype_base_sq, 
bag-rep-size-restrict, 
append_firstn_lastn_sq, 
bag-append-comm, 
bag-restrict-split, 
bag-summation-append, 
crng_times_ac_1, 
rng_times_assoc, 
bag-extensionality-no-repeats, 
decidable-equal-deq, 
decidable__equal_bag, 
decidable__equal_list, 
decidable__equal_set, 
decidable__equal_product, 
strong-subtype-self, 
strong-subtype-set3, 
strong-subtype-deq-subtype, 
bag-deq_wf, 
list-deq_wf, 
product-deq_wf, 
bag-combine-no-repeats, 
le-add-cancel, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
istype-false, 
length_of_nil_lemma, 
bag-map-no-repeats, 
no-repeats-bag-partitions, 
bag-parts'-no-repeats, 
bag-subtype, 
respects-equality-trivial, 
respects-equality-set-trivial, 
respects-equality-product, 
bag-member-product, 
general-append-cancellation, 
cons_wf_listp, 
bag-no-repeats_wf, 
bag-settype, 
subtype_rel_bag, 
bag-combine-no-repeats2, 
bag-product-no-repeats, 
bag-no-repeats-settype, 
sq_stable__bag-member, 
bag-append-union, 
cons-bag-as-append, 
bag-union-single, 
single-bag_wf, 
bag-append-ac, 
bag-append-assoc2, 
l_contains-nth_tl, 
l_contains-firstn, 
l_all-l_contains, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
bool_wf, 
ifthenelse_wf, 
general_length_nth_tl, 
add-is-int-iff, 
l_all_append, 
bag-rep-add, 
length-append
Rules used in proof : 
functionIsType, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
natural_numberEquality, 
voidElimination, 
independent_pairEquality, 
dependent_functionElimination, 
productIsType, 
productEquality, 
universeEquality, 
instantiate, 
isectIsTypeImplies, 
axiomEquality, 
isect_memberEquality_alt, 
inhabitedIsType, 
lambdaEquality_alt, 
sqequalRule, 
independent_isectElimination, 
applyEquality, 
because_Cache, 
productElimination, 
independent_pairFormation, 
universeIsType, 
lambdaFormation_alt, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
Error :memTop, 
equalityIstype, 
applyLambdaEquality, 
hyp_replacement, 
setIsType, 
unionElimination, 
dependent_set_memberEquality_alt, 
setEquality, 
addEquality, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
hypothesis_subsumption, 
intEquality, 
sqequalBase, 
cumulativity, 
dependent_pairEquality_alt, 
minusEquality, 
inlFormation_alt, 
equalityElimination, 
lambdaFormation, 
lambdaEquality, 
isect_memberEquality, 
voidEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[g,f,h:PowerSeries(X;r)].
        ((g*h)(x:=f)  =  (g(x:=f)*h(x:=f))) 
    supposing  valueall-type(X)
Date html generated:
2020_05_20-AM-09_07_02
Last ObjectModification:
2020_01_10-PM-02_36_13
Theory : power!series
Home
Index