Nuprl Lemma : fps-compose-single-general
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[b:bag(X)]. ∀[f:PowerSeries(X;r)].
    (<b>(x:=f) = (<(b|¬x)>*((f-(f[{}])*1))^(#((b|x)))) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-compose: g(x:=f), 
fps-exp: (f)^(n), 
fps-scalar-mul: (c)*f, 
fps-mul: (f*g), 
fps-sub: (f-g), 
fps-single: <c>, 
fps-one: 1, 
fps-coeff: f[b], 
power-series: PowerSeries(X;r), 
bag-co-restrict: (b|¬x), 
bag-restrict: (b|x), 
bag-size: #(bs), 
empty-bag: {}, 
bag: bag(T), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
true: True, 
squash: ↓T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
bag-restrict-split, 
power-series_wf, 
bag_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
fps-mul_wf, 
fps-single_wf, 
bag-co-restrict_wf, 
fps-exp_wf, 
fps-sub_wf, 
fps-scalar-mul_wf, 
fps-coeff_wf, 
empty-bag_wf, 
fps-one_wf, 
bag-size_wf, 
bag-restrict_wf, 
equal_wf, 
squash_wf, 
true_wf, 
fps-compose_wf, 
subtype_rel_self, 
iff_weakening_equal, 
fps-compose-mul, 
fps-compose-single-disjoint, 
bag-co-restrict-property, 
bag-append-comm, 
fps-mul-single, 
bag-rep-size-restrict, 
nat_wf, 
fps-single-bag-rep, 
fps-atom_wf, 
fps-compose-exp, 
fps-compose-atom-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
rename, 
dependent_functionElimination, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[b:bag(X)].  \mforall{}[f:PowerSeries(X;r)].
        (<b>(x:=f)  =  (<(b|\mneg{}x)>*((f-(f[\{\}])*1))\^{}(\#((b|x)))))  
    supposing  valueall-type(X)
 Date html generated: 
2018_05_21-PM-10_10_20
 Last ObjectModification: 
2018_05_19-PM-04_15_10
Theory : power!series
Home
Index