Nuprl Lemma : fps-single-bag-rep
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[n:ℕ].  (<bag-rep(n;x)> = (atom(x))^(n) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-exp: (f)^(n), 
fps-atom: atom(x), 
fps-single: <c>, 
power-series: PowerSeries(X;r), 
bag-rep: bag-rep(n;x), 
deq: EqDecider(T), 
nat: ℕ, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
squash: ↓T, 
bag-rep: bag-rep(n;x), 
primrec: primrec(n;b;c), 
empty-bag: {}, 
nil: [], 
it: ⋅, 
subtype_rel: A ⊆r B, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
fps-one: 1, 
fps-coeff: f[b], 
fps-single: <c>, 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
crng: CRng, 
rng: Rng, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nat_plus: ℕ+, 
fps-atom: atom(x)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
equal_wf, 
squash_wf, 
true_wf, 
power-series_wf, 
fps-single_wf, 
nil_wf, 
list-subtype-bag, 
fps-exp-zero, 
fps-atom_wf, 
subtype_rel_self, 
iff_weakening_equal, 
primrec0_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
fps-ext, 
empty-bag_wf, 
fps-one_wf, 
bag-eq_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-eq, 
bag-null_wf, 
assert-bag-null, 
rng_one_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
bag_wf, 
rng_zero_wf, 
bag-rep_wf, 
le_wf, 
fps-exp-unroll, 
fps-mul_wf, 
fps-mul-single, 
single-bag_wf, 
cons-bag-as-append, 
bag-append-comm, 
primrec-unroll, 
lt_int_wf, 
assert_of_lt_int, 
cons-bag_wf, 
primrec_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
axiomEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productElimination, 
unionElimination, 
universeEquality, 
equalityElimination, 
promote_hyp, 
cumulativity, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[n:\mBbbN{}].    (<bag-rep(n;x)>  =  (atom(x))\^{}(n)) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_58_37
Last ObjectModification:
2018_05_19-PM-04_15_01
Theory : power!series
Home
Index