Nuprl Lemma : fps-mul-ucont
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[g:PowerSeries(X;r)].  fps-ucont(X;eq;r;f.(f*g)) supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-ucont: fps-ucont(X;eq;r;f.G[f]), 
fps-mul: (f*g), 
power-series: PowerSeries(X;r), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
valueall-type: valueall-type(T), 
has-value: (a)↓, 
prop: ℙ, 
fps-ucont: fps-ucont(X;eq;r;f.G[f]), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
fps-restrict: fps-restrict(eq;r;f;d), 
fps-mul: (f*g), 
fps-coeff: f[b], 
crng: CRng, 
rng: Rng, 
so_lambda: λ2x.t[x], 
power-series: PowerSeries(X;r), 
top: Top, 
so_apply: x[s], 
pi1: fst(t), 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q, 
pi2: snd(t), 
cand: A c∧ B, 
sub-bag: sub-bag(T;as;bs), 
ring_p: IsRing(T;plus;zero;neg;times;one), 
group_p: IsGroup(T;op;id;inv)
Lemmas referenced : 
equal-wf-base, 
base_wf, 
bag-summation-equal, 
bag_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
bag-partitions_wf, 
rng_times_wf, 
pi1_wf_top, 
pi2_wf, 
deq-sub-bag_wf, 
bool_wf, 
eqtt_to_assert, 
assert-deq-sub-bag, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
sub-bag_wf, 
bag-member_wf, 
rng_plus_comm2, 
all_wf, 
power-series_wf, 
fps-coeff_wf, 
fps-mul_wf, 
fps-restrict_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
bag-member-partitions, 
bag-append_wf, 
crng_properties, 
rng_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomSqleEquality, 
hypothesis, 
extract_by_obid, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
rename, 
lambdaFormation, 
dependent_pairFormation, 
productEquality, 
cumulativity, 
setElimination, 
independent_isectElimination, 
lambdaEquality, 
applyEquality, 
productElimination, 
independent_pairEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
dependent_functionElimination, 
independent_functionElimination, 
promote_hyp, 
instantiate, 
independent_pairFormation, 
universeEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[g:PowerSeries(X;r)].    fps-ucont(X;eq;r;f.(f*g))  
    supposing  valueall-type(X)
 Date html generated: 
2018_05_21-PM-10_11_15
 Last ObjectModification: 
2017_07_26-PM-06_34_39
Theory : power!series
Home
Index