Nuprl Lemma : fps-set-to-one-add

[r:CRng]. ∀[f,g:PowerSeries(r)]. ∀[y:Atom]. ∀[n:ℕ].  ([(f+g)]_n(y:=1) ([f]_n(y:=1)+[g]_n(y:=1)) ∈ PowerSeries(r))


Proof




Definitions occuring in Statement :  fps-set-to-one: [f]_n(y:=1) fps-add: (f+g) power-series: PowerSeries(X;r) nat: uall: [x:A]. B[x] atom: Atom equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] fps-set-to-one: [f]_n(y:=1) fps-add: (f+g) fps-coeff: f[b] subtype_rel: A ⊆B implies:  Q bool: 𝔹 unit: Unit it: btrue: tt nat: bor: p ∨bq ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A crng: CRng rng: Rng power-series: PowerSeries(X;r) ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top true: True squash: T infix_ap: y iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fps-ext fps-set-to-one_wf fps-add_wf lt_int_wf bag-count_wf atom-deq_wf bool_wf eqtt_to_assert assert_of_lt_int nat_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf bag-size_wf rng_plus_wf bag-append_wf bag-rep_wf subtract_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf list-subtype-bag subtype_rel_self bag_wf power-series_wf crng_wf rng_car_wf rng_zero_wf rng_plus_zero iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality atomEquality hypothesis productElimination independent_isectElimination lambdaFormation sqequalRule natural_numberEquality applyEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry lambdaEquality setElimination rename dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination dependent_set_memberEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll axiomEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(r)].  \mforall{}[y:Atom].  \mforall{}[n:\mBbbN{}].    ([(f+g)]\_n(y:=1)  =  ([f]\_n(y:=1)+[g]\_n(y:=1)))



Date html generated: 2018_05_21-PM-10_12_51
Last ObjectModification: 2017_07_26-PM-06_35_10

Theory : power!series


Home Index