Nuprl Lemma : unit-fps_wf
*1* ∈ FinProbSpace
Proof
Definitions occuring in Statement : 
unit-fps: *1*, 
finite-prob-space: FinProbSpace, 
member: t ∈ T
Definitions unfolded in proof : 
unit-fps: *1*, 
finite-prob-space: FinProbSpace, 
and: P ∧ Q, 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
top: Top, 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
qeq: qeq(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
qsum: Σa ≤ j < b. E[j], 
rng_sum: rng_sum, 
mon_itop: Π lb ≤ i < ub. E[i], 
itop: Π(op,id) lb ≤ i < ub. E[i], 
ycomb: Y, 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
length: ||as||, 
list_ind: list_ind, 
cons: [a / b], 
nil: [], 
it: ⋅, 
btrue: tt, 
infix_ap: x f y, 
grp_op: *, 
pi1: fst(t), 
pi2: snd(t), 
add_grp_of_rng: r↓+gp, 
rng_plus: +r, 
qrng: <ℚ+*>, 
qadd: r + s, 
subtract: n - m, 
bfalse: ff, 
grp_id: e, 
rng_zero: 0, 
select: L[n], 
eq_int: (i =z j), 
assert: ↑b, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
less_than: a < b, 
squash: ↓T
Lemmas referenced : 
l_member_wf, 
l_all_wf2, 
equal-wf-T-base, 
rationals_wf, 
l_all_nil, 
false_wf, 
qle-int, 
qle_wf, 
l_all_cons, 
int_seg_wf, 
int-subtype-rationals, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
length_of_nil_lemma, 
length_of_cons_lemma, 
nil_wf, 
cons_wf, 
select_wf, 
length_wf, 
qsum_wf, 
assert-qeq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
intEquality, 
setElimination, 
rename, 
hypothesisEquality, 
independent_isectElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addEquality, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
applyEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
productEquality, 
imageElimination, 
baseClosed, 
setEquality
Latex:
*1*  \mmember{}  FinProbSpace
Date html generated:
2016_05_15-PM-11_44_45
Last ObjectModification:
2016_01_17-AM-10_07_40
Theory : randomness
Home
Index