Nuprl Lemma : decidable__rat-cube-face-ext
∀k:ℕ. ∀c,d:ℚCube(k).  Dec(c ≤ d)
Proof
Definitions occuring in Statement : 
rat-cube-face: c ≤ d, 
rational-cube: ℚCube(k), 
nat: ℕ, 
decidable: Dec(P), 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
has-value: (a)↓, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
uimplies: b supposing a, 
so_apply: x[s], 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s1;s2;s3;s4], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
uall: ∀[x:A]. B[x], 
decidable__false, 
decidable__equal_set, 
decidable__equal_rationals, 
decidable__equal_product, 
decidable__implies, 
any: any x, 
decidable__equal_rational-interval, 
decidable__or, 
decidable__not, 
decidable__exists_int_seg, 
decidable__rat-interval-face, 
decidable__all_int_seg, 
decidable__rat-cube-face, 
rat-cube-face-decider: rat-cube-face-decider(k;c;d), 
ifunion: ifunion(b; t), 
rat-point-interval: [a], 
ifthenelse: if b then t else f fi , 
it: ⋅, 
member: t ∈ T
Lemmas referenced : 
is-exception_wf, 
has-value_wf_base, 
lifting-strict-decide, 
lifting-strict-spread, 
strict4-decide, 
istype-void, 
lifting-strict-callbyvalue, 
decidable__rat-cube-face, 
decidable__false, 
decidable__equal_set, 
decidable__equal_rationals, 
decidable__equal_product, 
decidable__implies, 
decidable__equal_rational-interval, 
decidable__or, 
decidable__not, 
decidable__exists_int_seg, 
decidable__rat-interval-face, 
decidable__all_int_seg
Rules used in proof : 
decideExceptionCases, 
unionElimination, 
callbyvalueDecide, 
because_Cache, 
closedConclusion, 
baseApply, 
exceptionSqequal, 
axiomSqleEquality, 
spreadExceptionCases, 
independent_functionElimination, 
dependent_functionElimination, 
hypothesisEquality, 
equalityIstype, 
sqleReflexivity, 
productElimination, 
callbyvalueSpread, 
divergentSqle, 
sqequalSqle, 
lambdaFormation_alt, 
inhabitedIsType, 
independent_isectElimination, 
voidElimination, 
isect_memberEquality_alt, 
baseClosed, 
isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c,d:\mBbbQ{}Cube(k).    Dec(c  \mleq{}  d)
Date html generated:
2019_10_29-AM-07_49_58
Last ObjectModification:
2019_10_19-AM-10_43_31
Theory : rationals
Home
Index