Step
*
2
1
1
1
of Lemma
faces-of-compatible-rat-cubes
.....assertion.....
1. k : ℕ
2. f : ℚCube(k)
3. g : ℚCube(k)
4. c : ℚCube(k)
5. d : ℚCube(k)
6. ∀i:ℕk. (↑Inhabited(c i))
7. ∀i:ℕk. (↑Inhabited(d i))
8. ∀i:ℕk. f i ≤ c i
9. ∀i:ℕk. g i ≤ d i
10. ∀i:ℕk. (↑Inhabited(f i ⋂ g i))
11. ∀i:ℕk. (↑Inhabited(c i ⋂ d i))
12. (∀i:ℕk. c i ⋂ d i ≤ c i) ∧ (∀i:ℕk. c i ⋂ d i ≤ d i)
13. ∀i:ℕk. (((c i) = (d i) ∈ ℚInterval) ∨ ((snd((c i))) = (fst((d i))) ∈ ℚ) ∨ ((snd((d i))) = (fst((c i))) ∈ ℚ))
⊢ ∀i:ℕk. (f i ⋂ g i ≤ f i ∧ f i ⋂ g i ≤ g i)
BY
{ (ParallelLast THEN (InstLemma `compatible-rat-intervals-iff` [⌜f i⌝; ⌜g i⌝]⋅ THENA Auto)) }
1
1. k : ℕ
2. f : ℚCube(k)
3. g : ℚCube(k)
4. c : ℚCube(k)
5. d : ℚCube(k)
6. ∀i:ℕk. (↑Inhabited(c i))
7. ∀i:ℕk. (↑Inhabited(d i))
8. ∀i:ℕk. f i ≤ c i
9. ∀i:ℕk. g i ≤ d i
10. ∀i:ℕk. (↑Inhabited(f i ⋂ g i))
11. ∀i:ℕk. (↑Inhabited(c i ⋂ d i))
12. ∀i:ℕk. c i ⋂ d i ≤ c i
13. ∀i:ℕk. c i ⋂ d i ≤ d i
14. ∀i:ℕk. (((c i) = (d i) ∈ ℚInterval) ∨ ((snd((c i))) = (fst((d i))) ∈ ℚ) ∨ ((snd((d i))) = (fst((c i))) ∈ ℚ))
15. i : ℕk
16. ((c i) = (d i) ∈ ℚInterval) ∨ ((snd((c i))) = (fst((d i))) ∈ ℚ) ∨ ((snd((d i))) = (fst((c i))) ∈ ℚ)
⊢ ↑Inhabited(f i)
2
1. k : ℕ
2. f : ℚCube(k)
3. g : ℚCube(k)
4. c : ℚCube(k)
5. d : ℚCube(k)
6. ∀i:ℕk. (↑Inhabited(c i))
7. ∀i:ℕk. (↑Inhabited(d i))
8. ∀i:ℕk. f i ≤ c i
9. ∀i:ℕk. g i ≤ d i
10. ∀i:ℕk. (↑Inhabited(f i ⋂ g i))
11. ∀i:ℕk. (↑Inhabited(c i ⋂ d i))
12. ∀i:ℕk. c i ⋂ d i ≤ c i
13. ∀i:ℕk. c i ⋂ d i ≤ d i
14. ∀i:ℕk. (((c i) = (d i) ∈ ℚInterval) ∨ ((snd((c i))) = (fst((d i))) ∈ ℚ) ∨ ((snd((d i))) = (fst((c i))) ∈ ℚ))
15. i : ℕk
16. ((c i) = (d i) ∈ ℚInterval) ∨ ((snd((c i))) = (fst((d i))) ∈ ℚ) ∨ ((snd((d i))) = (fst((c i))) ∈ ℚ)
⊢ ↑Inhabited(g i)
3
1. k : ℕ
2. f : ℚCube(k)
3. g : ℚCube(k)
4. c : ℚCube(k)
5. d : ℚCube(k)
6. ∀i:ℕk. (↑Inhabited(c i))
7. ∀i:ℕk. (↑Inhabited(d i))
8. ∀i:ℕk. f i ≤ c i
9. ∀i:ℕk. g i ≤ d i
10. ∀i:ℕk. (↑Inhabited(f i ⋂ g i))
11. ∀i:ℕk. (↑Inhabited(c i ⋂ d i))
12. (∀i:ℕk. c i ⋂ d i ≤ c i) ∧ (∀i:ℕk. c i ⋂ d i ≤ d i)
13. ∀i:ℕk. (((c i) = (d i) ∈ ℚInterval) ∨ ((snd((c i))) = (fst((d i))) ∈ ℚ) ∨ ((snd((d i))) = (fst((c i))) ∈ ℚ))
14. i : ℕk
15. ((c i) = (d i) ∈ ℚInterval) ∨ ((snd((c i))) = (fst((d i))) ∈ ℚ) ∨ ((snd((d i))) = (fst((c i))) ∈ ℚ)
16. f i ⋂ g i ≤ f i ∧ f i ⋂ g i ≤ g i
⇐⇒ ((f i) = (g i) ∈ ℚInterval) ∨ ((snd((f i))) = (fst((g i))) ∈ ℚ) ∨ ((snd((g i))) = (fst((f i))) ∈ ℚ)
⊢ f i ⋂ g i ≤ f i ∧ f i ⋂ g i ≤ g i
Latex:
Latex:
.....assertion.....
1. k : \mBbbN{}
2. f : \mBbbQ{}Cube(k)
3. g : \mBbbQ{}Cube(k)
4. c : \mBbbQ{}Cube(k)
5. d : \mBbbQ{}Cube(k)
6. \mforall{}i:\mBbbN{}k. (\muparrow{}Inhabited(c i))
7. \mforall{}i:\mBbbN{}k. (\muparrow{}Inhabited(d i))
8. \mforall{}i:\mBbbN{}k. f i \mleq{} c i
9. \mforall{}i:\mBbbN{}k. g i \mleq{} d i
10. \mforall{}i:\mBbbN{}k. (\muparrow{}Inhabited(f i \mcap{} g i))
11. \mforall{}i:\mBbbN{}k. (\muparrow{}Inhabited(c i \mcap{} d i))
12. (\mforall{}i:\mBbbN{}k. c i \mcap{} d i \mleq{} c i) \mwedge{} (\mforall{}i:\mBbbN{}k. c i \mcap{} d i \mleq{} d i)
13. \mforall{}i:\mBbbN{}k. (((c i) = (d i)) \mvee{} ((snd((c i))) = (fst((d i)))) \mvee{} ((snd((d i))) = (fst((c i)))))
\mvdash{} \mforall{}i:\mBbbN{}k. (f i \mcap{} g i \mleq{} f i \mwedge{} f i \mcap{} g i \mleq{} g i)
By
Latex:
(ParallelLast THEN (InstLemma `compatible-rat-intervals-iff` [\mkleeneopen{}f i\mkleeneclose{}; \mkleeneopen{}g i\mkleeneclose{}]\mcdot{} THENA Auto))
Home
Index