Nuprl Lemma : q-Cauchy-Schwarz
∀[n:ℕ]. ∀[x,y:ℕn + 1 ⟶ ℚ].
  ((Σ0 ≤ i < n. x[i] * y[i] * Σ0 ≤ i < n. x[i] * y[i]) ≤ (Σ0 ≤ i < n. x[i] * x[i] * Σ0 ≤ i < n. y[i] * y[i]))
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j], 
qle: r ≤ s, 
qmul: r * s, 
rationals: ℚ, 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
nat: ℕ, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
qless: r < s, 
grp_lt: a < b, 
set_lt: a <p b, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
set_blt: a <b b, 
band: p ∧b q, 
infix_ap: x f y, 
set_le: ≤b, 
pi2: snd(t), 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
grp_le: ≤b, 
pi1: fst(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bor: p ∨bq, 
qpositive: qpositive(r), 
qsub: r - s, 
qadd: r + s, 
qmul: r * s, 
btrue: tt, 
lt_int: i <z j, 
bnot: ¬bb, 
bfalse: ff, 
qeq: qeq(r;s), 
eq_int: (i =z j), 
true: True, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
guard: {T}, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
qmul_ident, 
qmul_zero_qrng, 
mon_ident_q, 
qadd_preserves_qle, 
q_distrib, 
qadd_ac_1_q, 
qadd_comm_q, 
mon_assoc_q, 
qinv_inv_q, 
qmul_comm_qrng, 
qmul_ac_1_qrng, 
qmul_assoc_qrng, 
qmul_over_minus_qrng, 
qmul_over_plus_qrng, 
qsub_wf, 
q-square-non-neg, 
le_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
qsum_functionality_wrt_qle, 
qsum-linearity2, 
qsum-linearity1, 
iff_weakening_equal, 
qsum_product, 
true_wf, 
squash_wf, 
qle_wf, 
qadd_wf, 
int_seg_properties, 
nat_wf, 
rationals_wf, 
int_seg_wf, 
lelt_wf, 
qle_witness, 
int-subtype-rationals, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
qsum_wf, 
qmul_wf, 
qmul_preserves_qle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
addEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
functionEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
lambdaFormation, 
minusEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbQ{}].
    ((\mSigma{}0  \mleq{}  i  <  n.  x[i]  *  y[i]  *  \mSigma{}0  \mleq{}  i  <  n.  x[i]  *  y[i])  \mleq{}  (\mSigma{}0  \mleq{}  i  <  n.  x[i]  *  x[i]
    *  \mSigma{}0  \mleq{}  i  <  n.  y[i]  *  y[i]))
Date html generated:
2016_05_15-PM-11_12_22
Last ObjectModification:
2016_01_16-PM-09_23_24
Theory : rationals
Home
Index