Nuprl Lemma : qsum_functionality_wrt_qle
∀[n,m:ℤ]. ∀[x,y:{n..m + 1-} ⟶ ℚ].
  Σn ≤ k < m. x[k] ≤ Σn ≤ k < m. y[k] supposing ∀k:ℤ. ((n ≤ k) ⇒ (k ≤ m) ⇒ (x[k] ≤ y[k]))
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j], 
qle: r ≤ s, 
rationals: ℚ, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
prop: ℙ, 
bfalse: ff, 
guard: {T}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
ifthenelse: if b then t else f fi , 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
qle: r ≤ s, 
grp_leq: a ≤ b, 
infix_ap: x f y, 
grp_le: ≤b, 
pi1: fst(t), 
pi2: snd(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bor: p ∨bq, 
qpositive: qpositive(r), 
qsub: r - s, 
qadd: r + s, 
qmul: r * s, 
lt_int: i <z j, 
qeq: qeq(r;s), 
eq_int: (i =z j), 
true: True, 
nat: ℕ, 
ge: i ≥ j , 
le: A ≤ B, 
rev_uimplies: rev_uimplies(P;Q), 
qge: a ≥ b
Lemmas referenced : 
lt_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
less_than_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
le_int_wf, 
le_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
equal_wf, 
qle_witness, 
qsum_wf, 
int_seg_wf, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
lelt_wf, 
all_wf, 
qle_wf, 
intformle_wf, 
int_formula_prop_le_lemma, 
rationals_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
qsum_unroll, 
decidable__le, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
nat_wf, 
nat_properties, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
ge_wf, 
subtype_rel_dep_function, 
int_seg_subtype, 
subtype_rel_self, 
qadd_wf, 
qle_functionality_wrt_implies, 
qadd_functionality_wrt_qle, 
qle_weakening_eq_qorder, 
qle_reflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
lambdaEquality, 
functionExtensionality, 
addEquality, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
functionEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
applyLambdaEquality, 
intWeakElimination
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].
    \mSigma{}n  \mleq{}  k  <  m.  x[k]  \mleq{}  \mSigma{}n  \mleq{}  k  <  m.  y[k]  supposing  \mforall{}k:\mBbbZ{}.  ((n  \mleq{}  k)  {}\mRightarrow{}  (k  \mleq{}  m)  {}\mRightarrow{}  (x[k]  \mleq{}  y[k]))
Date html generated:
2018_05_22-AM-00_02_37
Last ObjectModification:
2017_07_26-PM-06_50_58
Theory : rationals
Home
Index