Nuprl Lemma : q-linear-times
∀[X:ℕ ⟶ ℚ]. ∀[a:ℚ]. ∀[k:ℕ]. ∀[y:ℚ List]. q-linear(k;j.a * X[j];y) = (a * q-linear(k;j.X[j];y)) ∈ ℚ supposing k ≤ ||y||
Proof
Definitions occuring in Statement :
q-linear: q-linear(k;i.X[i];y)
,
qmul: r * s
,
rationals: ℚ
,
length: ||as||
,
list: T List
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
le: A ≤ B
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
squash: ↓T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
nat_plus: ℕ+
Lemmas referenced :
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
le_wf,
length_wf,
rationals_wf,
list_wf,
equal_wf,
squash_wf,
true_wf,
q-linear-base,
qmul_wf,
nat_wf,
q-linear_wf,
false_wf,
iff_weakening_equal,
decidable__le,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
select_wf,
decidable__lt,
qadd_wf,
q-linear-unroll,
qmul_over_plus_qrng,
qmul_assoc_qrng,
qmul_comm_qrng,
qmul_ac_1_qrng,
qadd_comm_q
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
lambdaFormation,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
independent_functionElimination,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
applyEquality,
imageElimination,
universeEquality,
functionExtensionality,
dependent_set_memberEquality,
imageMemberEquality,
baseClosed,
productElimination,
because_Cache,
unionElimination,
functionEquality
Latex:
\mforall{}[X:\mBbbN{} {}\mrightarrow{} \mBbbQ{}]. \mforall{}[a:\mBbbQ{}]. \mforall{}[k:\mBbbN{}]. \mforall{}[y:\mBbbQ{} List].
q-linear(k;j.a * X[j];y) = (a * q-linear(k;j.X[j];y)) supposing k \mleq{} ||y||
Date html generated:
2018_05_22-AM-00_17_41
Last ObjectModification:
2017_07_26-PM-06_53_36
Theory : rationals
Home
Index