Nuprl Lemma : q-sat-constraints_wf
∀[k:ℕ]. ∀[A:(ℚ List × ℤ × (ℚ List)) List]. ∀[y:ℚ List].  (q-sat-constraints(k;A;y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
q-sat-constraints: q-sat-constraints(k;A;y), 
rationals: ℚ, 
list: T List, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
product: x:A × B[x], 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
q-sat-constraints: q-sat-constraints(k;A;y), 
prop: ℙ, 
cand: A c∧ B, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
spreadn: spread3, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
equal_wf, 
length_wf, 
rationals_wf, 
l_all_wf2, 
list_wf, 
l_member_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
q-linear_wf, 
select?_wf, 
int-subtype-rationals, 
nat_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
qle_wf, 
qless_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality, 
lambdaFormation, 
productElimination, 
independent_pairEquality, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
applyEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
setEquality, 
axiomEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[A:(\mBbbQ{}  List  \mtimes{}  \mBbbZ{}  \mtimes{}  (\mBbbQ{}  List))  List].  \mforall{}[y:\mBbbQ{}  List].    (q-sat-constraints(k;A;y)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-AM-00_25_32
Last ObjectModification:
2017_07_26-PM-06_55_55
Theory : rationals
Home
Index