Nuprl Lemma : callbyvalueall-seq-fun1
∀[L,K,G,F:Top]. ∀[n,m:ℕ]. ∀[k1,k2:ℕn + 1].
  (callbyvalueall-seq(λi.if i <z k1 then L[i] else K[i] fi G;F;n;m) ~ callbyvalueall-seq(λi.if i <z k2
                                                                                             then L[i]
                                                                                             else K[i]
                                                                                             fi G;F;n;m))
Proof
Definitions occuring in Statement : 
callbyvalueall-seq: callbyvalueall-seq(L;G;F;n;m)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
lambda: λx.A[x]
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
callbyvalueall-seq: callbyvalueall-seq(L;G;F;n;m)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
decidable__le, 
subtract_wf, 
int_seg_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
equal_wf, 
subtype_base_sq, 
int_subtype_base, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
nat_wf, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
lt_int_wf, 
assert_of_lt_int, 
decidable__lt, 
lelt_wf, 
top_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
unionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
isectElimination, 
natural_numberEquality, 
addEquality, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
intWeakElimination, 
lambdaFormation, 
sqequalAxiom, 
equalityElimination, 
promote_hyp, 
isect_memberFormation
Latex:
\mforall{}[L,K,G,F:Top].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[k1,k2:\mBbbN{}n  +  1].
    (callbyvalueall-seq(\mlambda{}i.if  i  <z  k1  then  L[i]  else  K[i]  fi  ;G;F;n;m) 
    \msim{}  callbyvalueall-seq(\mlambda{}i.if  i  <z  k2  then  L[i]  else  K[i]  fi  ;G;F;n;m))
Date html generated:
2018_05_21-PM-06_21_56
Last ObjectModification:
2018_05_19-PM-05_28_34
Theory : untyped!computation
Home
Index