Nuprl Lemma : funtype-unroll

[T,A:Top]. ∀[n:ℕ].  (funtype(n;A;T) if (n =z 0) then else (A 0) ⟶ funtype(n 1;λi.(A (i 1));T) fi )


Proof




Definitions occuring in Statement :  funtype: funtype(n;A;T) nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T funtype: funtype(n;A;T) nat: top: Top all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add int_subtype_base int_upper_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermSubtract_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf general_arith_equation2 nat_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis isect_memberEquality voidElimination voidEquality because_Cache natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination hypothesis_subsumption dependent_set_memberEquality independent_pairFormation cumulativity intEquality lambdaEquality int_eqEquality computeAll sqequalAxiom

Latex:
\mforall{}[T,A:Top].  \mforall{}[n:\mBbbN{}].
    (funtype(n;A;T)  \msim{}  if  (n  =\msubz{}  0)  then  T  else  (A  0)  {}\mrightarrow{}  funtype(n  -  1;\mlambda{}i.(A  (i  +  1));T)  fi  )



Date html generated: 2017_10_01-AM-08_39_39
Last ObjectModification: 2017_07_26-PM-04_27_38

Theory : untyped!computation


Home Index