Nuprl Lemma : mk_lambdas_fun-unroll-ite

[F:Top]. ∀[m:ℕ].
  (mk_lambdas_fun(F;m) if (m =z 0) then x.x) else λx.mk_lambdas_fun(λg.(F f.(g (f x))));m 1) fi )


Proof




Definitions occuring in Statement :  mk_lambdas_fun: mk_lambdas_fun(F;m) nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} mk_lambdas_fun: mk_lambdas_fun(F;m) mk_lambdas-fun: mk_lambdas-fun(F;G;n;m) le_int: i ≤j lt_int: i <j bnot: ¬bb bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q assert: b false: False not: ¬A ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top le: A ≤ B less_than': less_than'(a;b) int_upper: {i...} nat_plus: + decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B true: True
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int subtype_base_sq int_subtype_base btrue_wf assert_of_le_int eqff_to_assert le_int_wf equal_wf bool_cases_sqequal bool_subtype_base assert-bnot le_wf nat_properties satisfiable-full-omega-tt intformnot_wf intformle_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf neg_assert_of_eq_int int_upper_subtype_nat false_wf nequal-le-implies zero-add mk_lambdas_fun-unroll-first decidable__lt not-lt-2 add_functionality_wrt_le add-commutes le-add-cancel less_than_wf nat_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache sqequalRule instantiate cumulativity intEquality dependent_functionElimination independent_functionElimination dependent_pairFormation promote_hyp voidElimination lambdaEquality isect_memberEquality voidEquality computeAll hypothesis_subsumption dependent_set_memberEquality independent_pairFormation applyEquality sqequalAxiom

Latex:
\mforall{}[F:Top].  \mforall{}[m:\mBbbN{}].
    (mk\_lambdas\_fun(F;m)  \msim{}  if  (m  =\msubz{}  0)
    then  F  (\mlambda{}x.x)
    else  \mlambda{}x.mk\_lambdas\_fun(\mlambda{}g.(F  (\mlambda{}f.(g  (f  x))));m  -  1)
    fi  )



Date html generated: 2017_10_01-AM-08_40_48
Last ObjectModification: 2017_07_26-PM-04_28_16

Theory : untyped!computation


Home Index