is mentioned by
[prime_factorization_exists2] | |
Thm* h:({2..(n+1)}). Thm* n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h) | [prime_factorization_exists] |
Thm* 2 n < k+1 Thm* Thm* (i:{2..k}. ni 0<g(i) prime(i)) Thm* Thm* (h:({2..k}). Thm* ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; k; h)) | [prime_factorization_existsLEMMA] |
Thm* prime(z) Thm* Thm* (g':({2..k}). Thm* ({2..k}(g) = {2..k}(g') Thm* (& g'(z) = 0 Thm* (& (u:{2..k}. z<u g'(u) = g(u))) | [can_reduce_composite_factor2] |
Thm* xy<k Thm* Thm* (h:({2..k}). Thm* ({2..k}(g) = {2..k}(h) Thm* (& h(xy) = 0 Thm* (& (u:{2..k}. xy<u h(u) = g(u))) | [can_reduce_composite_factor] |
Thm* prime(p) Thm* Thm* (a,b:, e:({a..b}). Thm* (a<b p | ( i:{a..b}. e(i)) (i:{a..b}. p | e(i))) | [prime_divs_mul_via_intseg] |
Thm* {a..b}(f) = 1 (i:{a..b}. f(i) = 0) | [eval_factorization_not_one] |
[eval_factorization_one_b] |
In prior sections: core quot 1 LogicSupplement int 2 num thy 1 SimpleMulFacts IteratedBinops
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html