FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  x:AB(x) == x:AB(x)

is mentioned by

Thm*  n:{1...}. f:(Prime). f is a factorization of n[prime_factorization_exists2]
Thm*  n:{1...}. 
Thm*  h:({2..(n+1)}). 
Thm*  n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h)
[prime_factorization_exists]
Thm*  k:{2...}, n:g:({2..k}).
Thm*   n < k+1
Thm*  
Thm*  (i:{2..k}. ni  0<g(i prime(i))
Thm*  
Thm*  (h:({2..k}). 
Thm*  ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; kh))
[prime_factorization_existsLEMMA]
Thm*  k:{2...}, g:({2..k}), z:{2..k}.
Thm*  prime(z)
Thm*  
Thm*  (g':({2..k}). 
Thm*  ({2..k}(g) = {2..k}(g')
Thm*  (g'(z) = 0
Thm*  (& (u:{2..k}. z<u  g'(u) = g(u)))
[can_reduce_composite_factor2]
Thm*  k:{2...}, g:({2..k}), x,y:{2..k}.
Thm*  xy<k
Thm*  
Thm*  (h:({2..k}). 
Thm*  ({2..k}(g) = {2..k}(h)
Thm*  (h(xy) = 0
Thm*  (& (u:{2..k}. xy<u  h(u) = g(u)))
[can_reduce_composite_factor]
Thm*  p:
Thm*  prime(p)
Thm*  
Thm*  (a,b:e:({a..b}).
Thm*  (a<b  p | ( i:{a..b}. e(i))  (i:{a..b}. p | e(i)))
[prime_divs_mul_via_intseg]
Thm*  a:{2...}, b:f:({a..b}).
Thm*  {a..b}(f) = 1  (i:{a..b}. f(i) = 0)
[eval_factorization_not_one]
Thm*  a:{2...}, b:f:({a..b}). {a..b}(f) = 1  (i:{a..b}. 0<f(i))[eval_factorization_one_b]

In prior sections: core quot 1 LogicSupplement int 2 num thy 1 SimpleMulFacts IteratedBinops

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

FTA Sections DiscrMathExt Doc