is mentioned by
[fta_mset] | |
[prime_factorization_exists2] | |
Thm* h:({2..(n+1)}). Thm* n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h) | [prime_factorization_exists] |
Thm* 2 n < k+1 Thm* Thm* (i:{2..k}. ni 0<g(i) prime(i)) Thm* Thm* (h:({2..k}). Thm* ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; k; h)) | [prime_factorization_existsLEMMA] |
Thm* prime(z) Thm* Thm* (g':({2..k}). Thm* ({2..k}(g) = {2..k}(g') Thm* (& g'(z) = 0 Thm* (& (u:{2..k}. z<u g'(u) = g(u))) | [can_reduce_composite_factor2] |
Thm* xy<k Thm* Thm* (h:({2..k}). Thm* ({2..k}(g) = {2..k}(h) Thm* (& h(xy) = 0 Thm* (& (u:{2..k}. xy<u h(u) = g(u))) | [can_reduce_composite_factor] |
Thm* xx<k Thm* Thm* {2..k}(g) = {2..k}(split_factor1(g; x)) Thm* & split_factor1(g; x)(xx) = 0 Thm* & (u:{2..k}. xx<u split_factor1(g; x)(u) = g(u)) | [split_factor1_char] |
Thm* xx<k split_factor1(g; x) {2..k} | [split_factor1_wf] |
Thm* xy<k Thm* Thm* x<y Thm* Thm* {2..k}(g) = {2..k}(split_factor2(g; x; y)) Thm* & split_factor2(g; x; y)(xy) = 0 Thm* & (u:{2..k}. xy<u split_factor2(g; x; y)(u) = g(u)) | [split_factor2_char] |
Thm* xy<k split_factor2(g; x; y) {2..k} | [split_factor2_wf] |
Thm* is_prime_factorization(a; b; g) Thm* Thm* is_prime_factorization(a; b; h) {a..b}(g) = {a..b}(h) g = h | [prime_factorization_unique] |
Thm* {a..b}(f) = 1 (i:{a..b}. f(i) = 0) | [eval_factorization_not_one] |
[eval_factorization_one_c] | |
[eval_factorization_one_b] | |
[eval_factorization_one] |
In prior sections: int 1 int 2 SimpleMulFacts IteratedBinops
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html