is mentioned by
Thm* 2 n < k+1 Thm* Thm* (i:{2..k}. ni 0<g(i) prime(i)) Thm* Thm* (h:({2..k}). Thm* ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; k; h)) | [prime_factorization_existsLEMMA] |
Thm* prime(z) Thm* Thm* (g':({2..k}). Thm* ({2..k}(g) = {2..k}(g') Thm* (& g'(z) = 0 Thm* (& (u:{2..k}. z<u g'(u) = g(u))) | [can_reduce_composite_factor2] |
Thm* is_prime_factorization(a; b; f) Thm* Thm* prime(p) Thm* Thm* p | {a..b}(f) {a..b}(f) = p{a..b}(reduce_factorization(f; p)) | [remove_prime_factor] |
Thm* is_prime_factorization(a; b; f) Thm* Thm* prime(p) p | {a..b}(f) p {a..b} & 0<f(p) | [prime_factorization_includes_prime_divisors] |
[prime_divs_exp] | |
Thm* prime(p) Thm* Thm* (a,b:, e:({a..b}). Thm* (a<b p | ( i:{a..b}. e(i)) (i:{a..b}. p | e(i))) | [prime_divs_mul_via_intseg] |
[nat_prime_div_each_factor] | |
Thm* prime(X) Thm* Thm* (X1:. X1<X prime(X1) (a,b:. X1 | ab X1 | a X1 | b)) Thm* Thm* (W:. 0<W W<X (t:. X | tW X | t)) | [nat_prime_div_each_factorLEMMA] |
[prime_mset_complete_ismin] | |
[is_prime_factorization] |
In prior sections: num thy 1 SimpleMulFacts
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html