is mentioned by
![]() ![]() ![]() ![]() ![]() ![]() Thm* 2 ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() ![]() | [prime_factorization_existsLEMMA] |
![]() ![]() ![]() ![]() ![]() ![]() Thm* ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() ![]() Thm* (& g'(z) = 0 Thm* (& ( ![]() ![]() ![]() ![]() | [can_reduce_composite_factor2] |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* is_prime_factorization(a; b; f) Thm* ![]() ![]() Thm* prime(p) Thm* ![]() ![]() Thm* p | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [remove_prime_factor] |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* is_prime_factorization(a; b; f) Thm* ![]() ![]() Thm* prime(p) ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [prime_factorization_includes_prime_divisors] |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [prime_divs_exp] |
![]() ![]() Thm* prime(p) Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() ![]() Thm* (a<b ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [prime_divs_mul_via_intseg] |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [nat_prime_div_each_factor] |
![]() ![]() Thm* prime(X) Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [nat_prime_div_each_factorLEMMA] |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [prime_mset_complete_ismin] |
![]() ![]() ![]() ![]() | [is_prime_factorization] |
In prior sections: num thy 1 SimpleMulFacts
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html