(12steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: can reduce composite factor 1 1 2 1 1

1. k : {2...}
2. g : {2..k}
3. x : {2..k}
4. y : {2..k}
5. xy
6. xy<k
7. y<xy
8. x<y
  {2..k}(g) = {2..k}(split_factor1(gx))
  & split_factor1(gx)(xx) = 0
  & (u:{2..k}. xx<u  split_factor1(gx)(u) = g(u))


By: Guarding (<prop> & <prop>)
BackThru: 
Thm*  k:{2...}, g:({2..k}), x:{2..k}.
Thm*  xx<k
Thm*  
Thm*  {2..k}(g) = {2..k}(split_factor1(gx))
Thm*  & split_factor1(gx)(xx) = 0
Thm*  & (u:{2..k}. xx<u  split_factor1(gx)(u) = g(u))


Generated subgoals:

None

About:
intnatural_numbermultiplyless_thanapplyfunctionequalimpliesandall
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(12steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc