(12steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: can reduce composite factor 1 1 2 1

1. k : {2...}
2. g : {2..k}
3. x : {2..k}
4. y : {2..k}
5. xy
6. xy<k
7. y<xy
8. x<y
  h:({2..k}). 
  {2..k}(g) = {2..k}(h) & h(xx) = 0 & (u:{2..k}. xx<u  h(u) = g(u))


By: Witness: split_factor1(gx)


Generated subgoal:

1   {2..k}(g) = {2..k}(split_factor1(gx))
  & split_factor1(gx)(xx) = 0
  & (u:{2..k}. xx<u  split_factor1(gx)(u) = g(u))

1 step

About:
intnatural_numbermultiplyless_thanapplyfunction
equalimpliesandall
exists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(12steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc