(11steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: prime factorization exists2 1 1 1 2

1. n : {1...}
2. h : {2..(n+1)}
3. n = {2..n+1}(h)
4. is_prime_factorization(2; (n+1); h)
  n = {2..n+1}(prime_mset_complete(complete_intseg_mset(2; (n+1); h)))


By: {2..n+1}(h)
=
{2..n+1}(prime_mset_complete(complete_intseg_mset(2; (n+1); h)))
Asserted
THENA
(Analyze THEN FunExtensionality)


Generated subgoal:

1 5. x : {2..(n+1)}
  h(x) = prime_mset_complete(complete_intseg_mset(2; (n+1); h))(x)

5 steps

About:
intnatural_numberaddapplyfunctionequal
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(11steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc