(4steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: prime factorization mset unique 1 1 1

1. n : 
2. f : Prime
3. g : Prime
4. x:Primen<x  f(x) = 0
5. n = {2..n+1}(prime_mset_complete(f))
6. x:Primen<x  g(x) = 0
7. n = {2..n+1}(prime_mset_complete(g))
8. (x:{2..(n+1)}. prime_mset_complete(f)(x) = prime_mset_complete(g)(x))
8. 
8. f = g
9. {2..(n+1)}
  prime_mset_complete(f) = prime_mset_complete(g {2..(n+1)}


By: BackThru: 
Thm*  a:{2...}, b:g,h:({a..b}).
Thm*  is_prime_factorization(abg)
Thm*  
Thm*  is_prime_factorization(abh {a..b}(g) = {a..b}(h g = h
THEN
BackThru: 
Thm*  f:(Prime), b:. is_prime_factorization(2; b; prime_mset_complete(f))


Generated subgoals:

None

About:
intnatural_numberaddless_thanapplyfunctionequalimpliesall
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(4steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc