(4steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: prime factorization mset unique 1 1

1. n : 
2. f : Prime
3. g : Prime
4. x:Primen<x  f(x) = 0
5. n = {2..n+1}(prime_mset_complete(f))
6. x:Primen<x  g(x) = 0
7. n = {2..n+1}(prime_mset_complete(g))
8. (x:{2..(n+1)}. prime_mset_complete(f)(x) = prime_mset_complete(g)(x))
8. 
8. f = g
9. x : {2..(n+1)}
  prime_mset_complete(f)(x) = prime_mset_complete(g)(x)


By: ApFun: prime_mset_complete(f) = prime_mset_complete(g {2..(n+1)} to: x


Generated subgoal:

1   prime_mset_complete(f) = prime_mset_complete(g {2..(n+1)}
1 step

About:
intnatural_numberaddless_thanapplyfunctionequalimpliesall
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(4steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc