(17steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: split factor2 char 1 1 a

1. k : {2...}
2. g : {2..k}
3. x : {2..k}
4. y : {2..k}
5. xy<k
6. x<y
7. x<xy
8. y<xy
9. h : {2..k}
10. h = split_factor2(gxy)
11. h(xy) = 0
12. h(x) = g(x)+g(xy)
13. h(y) = g(y)+g(xy)
14. u:{2..k}. u = x  u = y  u = xy  h(u) = g(u)
  {2..x}(g)xg(x){x+1..y}(g)yg(y){y+1..xy}(g)
  {2..x}(g)xg(x){x+1..y}(g)yg(y)(xy)g(xy){xy+1..k}(g)
  =
  {2..x}(h)xh(x){x+1..y}(h)yh(y){y+1..xy}(h)
  {2..x}(h)xh(x){x+1..y}(h)yh(y)(xy)h(xy){xy+1..k}(h)


By: MulFactorOut
[{2..x}(g),{2..x}(h)
;{x+1..y}(g),{x+1..y}(h)
;{y+1..xy}(g),{y+1..xy}(h)
;{xy+1..k}(g),{xy+1..k}(h)]
Concl ...a


Generated subgoals:

1   {2..x}(g) = {2..x}(h)
1 step
2   {x+1..y}(g) = {x+1..y}(h)
1 step
3   {y+1..xy}(g) = {y+1..xy}(h)
1 step
4   {xy+1..k}(g) = {xy+1..k}(h)
1 step
5   xg(x)yg(y)(xy)g(xy) = xh(x)yh(y)(xy)h(xy)
PREMISE

About:
intnatural_numberaddmultiplyless_thanlambdaapplyfunctionequalimpliesall
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(17steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc