| Some definitions of interest. |
|
hanoi_seq | Def s is a Hanoi(n disk) seq on a..z
Def == x,x':{a...z}.
Def == x+1 = x'  ( k:{1...n}. Moving disk k of n takes s(x) to s(x')) |
| | Thm* n: , a,z: , s:({a...z} {1...n} Peg).
Thm* s is a Hanoi(n disk) seq on a..z Prop |
|
hanoi_PEG | Def Peg == {1...3} |
| | Thm* Peg Type |
|
hanoi_sol2_ala_generalPROG | Def HanoiSTD(n disks; from: p; to: q; indexing from: a)
Def == if n= 0 <a, x,i. whatever>
Def == else HanoiSTD(n-1 disks; from: p; to: otherPeg(p; q); indexing from: a)
Def == else /m,s1.
Def == else HanoiSTD(n-1 disks; from: otherPeg(p; q); to: q; indexing from: m
Def == else HanoiSTD(+1)
Def == else /z,s2. <z,HanoiHelper(n; s1; i.p; s2; i.q)/r1,r2. r1 @(m) r2> fi
Def (recursive) |
| | Thm* n: , p,q:Peg.
Thm* p q
Thm* 
Thm* ( a: .
Thm* (HanoiSTD(n disks; from: p; to: q; indexing from: a)
Thm* ( z:{a...} ({a...z} {1...n} Peg)) |
|
hanoi_otherpeg | Def otherPeg(x; y) == 6-(x+y) |
| | Thm* x,y:Peg. x y  otherPeg(x; y) Peg |
|
int_iseg | Def {i...j} == {k: | i k & k j } |
| | Thm* i,j: . {i...j} Type |
|
nequal | Def a b T == a = b T |
| | Thm* A:Type, x,y:A. (x y) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |