| Some definitions of interest. |
|
exponentiation | Def n^k == if k=0 1 else n(n^(k-1)) fi (recursive) |
| | Thm* n:, k:. (n^k) |
| | Thm* n,k:. (n^k) |
| | Thm* n:, k:. (n^k) |
|
hanoi_seq | Def s is a Hanoi(n disk) seq on a..z
Def == x,x':{a...z}.
Def == x+1 = x' (k:{1...n}. Moving disk k of n takes s(x) to s(x')) |
| | Thm* n:, a,z:, s:({a...z}{1...n}Peg).
Thm* s is a Hanoi(n disk) seq on a..z Prop |
|
hanoi_PEG | Def Peg == {1...3} |
| | Thm* Peg Type |
|
int_iseg | Def {i...j} == {k:| ik & kj } |
| | Thm* i,j:. {i...j} Type |
|
int_upper | Def {i...} == {j:| ij } |
| | Thm* n:. {n...} Type |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
le | Def AB == B<A |
| | Thm* i,j:. (ij) Prop |
|
nequal | Def a b T == a = b T |
| | Thm* A:Type, x,y:A. (x y) Prop |