Definitions HanoiTowers Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
exponentiationDef  n^k == if k=0 1 else n(n^(k-1)) fi  (recursive)
Thm*  n:k:. (n^k 
Thm*  n,k:. (n^k 
Thm*  n:k:. (n^k 
hanoi_seqDef  s is a Hanoi(n disk) seq on a..z
Def  == x,x':{a...z}.
Def  == x+1 = x'  (k:{1...n}. Moving disk k of n takes s(x) to s(x'))
Thm*  n:a,z:s:({a...z}{1...n}Peg).
Thm*  s is a Hanoi(n disk) seq on a..z  Prop
hanoi_PEGDef  Peg == {1...3}
Thm*  Peg  Type
hanoi_sol2_ala_generalPROGDef  HanoiSTD(n disks; from: p; to: q; indexing from: a)
Def  == if n=0 <a,x,i. whatever>
Def  == else HanoiSTD(n-1 disks; from: p; to: otherPeg(pq); indexing from: a)
Def  == else /m,s1.
Def  == else HanoiSTD(n-1 disks; from: otherPeg(pq); to: q; indexing from: m
Def  == else HanoiSTD(+1)
Def  == else /z,s2. <z,HanoiHelper(ns1i.ps2i.q)/r1,r2r1 @(mr2> fi
Def  (recursive)
Thm*  n:p,q:Peg.
Thm*  p  q
Thm*  
Thm*  (a:
Thm*  (HanoiSTD(n disks; from: p; to: q; indexing from: a)
Thm*  ( z:{a...}({a...z}{1...n}Peg))
int_isegDef  {i...j} == {k:ik & kj }
Thm*  i,j:. {i...j Type
int_upperDef  {i...} == {j:ij }
Thm*  n:. {n...}  Type
natDef   == {i:| 0i }
Thm*    Type
leDef  AB == B<A
Thm*  i,j:. (ij Prop
nequalDef  a  b  T == a = b  T
Thm*  A:Type, x,y:A. (x  y Prop
pi1Def  1of(t) == t/x,y. x
Thm*  A:Type, B:(AType), p:(a:AB(a)). 1of(p A

About:
pairspreadspreadproductifthenelseintnatural_numberadd
subtractmultiplyless_thansetlambdaapplyfunctionrecursive_def_notice
universeequalmemberpropimpliesandallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions HanoiTowers Sections NuprlLIB Doc