is mentioned by
Thm* (b:B. e(b) = b) Thm* Thm* (A:Type, f:(AAB). (a:A. (Diag f wrt x. e(x)) = f(a))) | [diagonalization_wrt_eq] |
Thm* (b:B. R(e(b),b)) Thm* Thm* (A:Type, f:(AAB). (a:A. R((Diag f wrt x. e(x))(a),f(a,a)))) | [diagonalization] |
[diagonalize_wf] | |
[range_restriction_indep] | |
[range_restriction_dep] | |
Thm* (x:A. !y:B. P(x,y)) (!f:(AB). x:A. P(x,f(x))) | [unique_indep_fun_description] |
[indep_fun_description] | |
[ax_choice_version3] | |
[ax_choice_version2] | |
Thm* (x:A. !y:B(x). P(x,y)) (!{f:(x:AB(x))| x:A. P(x,f(x)) }) | [unique_fun_description2] |
Thm* (x:A. !y:B(x). P(x,y)) (!f:(x:AB(x)). x:A. P(x,f(x))) | [unique_fun_description] |
[fun_description] | |
[dep_ax_choice_version2] | |
[indep_fun_extensional] | |
[inhabited_uniquely_vs_exists_unique] | |
[dec_pred_imp_bool_decider_exists] | |
[dec_pred_iff_some_boolfun] | |
[exists_unique_elim] | |
Thm* (EquivRel x,y:A. R(x,y)) Thm* Thm* (x:A. R(x,x) & (y:A. R(x,y) R(y,x) & (z:A. R(y,z) R(x,z)))) | [equivrel_characterization] |
Thm* (P:(SetProp). p:Set. x:Set. (x p) P(x)) | [RussellsParadox_Frege2] |
[RussellsParadox_Frege] | |
[no_prop_iff_its_neg] | |
[discrete_vs_bool2] | |
[discrete_vs_bool] | |
[is_discrete_wf] | |
Thm* =ext Thm* if b {x:A| P(x) } else {x:A| Q(x) } fi | [ifthenelse_distr_subtype] |
[subset_squash_exteq] | |
[subset_sq_exteq] | |
[set_inc_wrt_imp_sq] | |
[squash_to_subset] | |
[subset_to_squash] | |
[subset_exteq] | |
[exteq_subset_vs_and] | |
[xor_vs_neg_n_dec] | |
[xor_wf] | |
[set_inc_wrt_imp] | |
[sq_sq_iff_sq] | |
[dec_imp_dec_sq] | |
[sq_not_iff_sq] | |
[not_sq_iff_sq] | |
[unique_fn_over_empty] | |
[inhabited_uniquely_elim] | |
[inhabited_uniquely_vs_exists] | |
[inhabited_vs_exists] | |
[inhab_rep_eqv] | |
[inhab_rep_axiom] | |
[inhab_choice] | |
[singleton_singleton_self] | |
[singleton_eq_in_self] | |
Thm* (i:{i:A| P(i) }B(i)) =ext {v:(i:AB(i))| P(v/x,y. x) } | [exteq_sigma_st_dom] |
[not_over_exists_imp] | |
[isect_two_wf] | |
[decbl_iff_some_bool] | |
[cand_is_prop] | |
[decidable__cand] | |
[guarded_prop_to_prop] | |
[or_fused] | |
[disjunct_elim] | |
[negnegelim_vs_bivalence] | |
[is_the] | |
[is_discrete] | |
[inhabited_uniquely] | |
[exteq] | |
[allst] |
In prior sections: core well fnd int 1 bool 1 rel 1 quot 1
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html