PrintForm Definitions action sets Sections AutomataTheory Doc

At: pump theorem 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1

1. Alph: Type
2. S: ActionSet(Alph)
3. N:
4. s: S.car
5. f: S.carN
6. g: NS.car
7. g o f = Id
8. f o g = Id
9. A: Alph*
10. N < ||A||
11. i: ||A||
12. j: ||A||
13. i < j
14. f((S:A[||A||-i..||A||]s)) = f((S:A[||A||-j..||A||]s))
15. (S:A[||A||-i..||A||]s) = (S:A[||A||-j..||A||]s)
16. 0 = 0
17. (S:(A[0..||A||-j]) @ (A[||A||-i..||A||])s) = (S:(A[0..||A||-j]) @ (A[||A||-j..||A||])s)

(S:(A[0..||A||-j]) @ (A[||A||-j..||A||])s) = (S:As)

By: RWH (LemmaC Thm* as:T*, i:{0...||as||}, j:{i...||as||}, k:{j...||as||}. ((as[i..j]) @ (as[j..k])) = (as[i..k])) 0

Generated subgoal:

1 (S:A[0..||A||]s) = (S:As)


About:
equalnatural_numbersubtractuniversefunction
listless_thanapplyint